Cholestatic liver injury may activate HSCs (hepatic stellate cells) to a profibrogenic phenotype, contributing to liver fibrogenesis. We have previously demonstrated the involvement of TLR (Toll-like receptor) 7 in the pathogenesis of biliary atresia. In the present study we investigated the ability of TLR7 to modulate the profibrogenic phenotype in HSCs. Obstructive jaundice was associated with significant down-regulation of TLR7. Primary HSCs isolated from BDL (bile duct ligation) rats with obstructive jaundice exhibited reduced expression of TLR7 and increased expression of α-SMA (α-smooth muscle actin) and collagen-α1 compared with sham rats, reflecting HSC-mediated changes. Treatment of primary activated rat HSCs and rat T6 cells with CL075, a TLR7 and TLR8 ligand, significantly decreased expression of MCP-1 (monocyte chemotactic protein-1), TGF-β1 (transforming growth factor-β1), collagen-α1 and MMP-2 (matrix metalloproteinase-2), and inhibited cell proliferation and migration. In contrast, silencing TLR7 expression with shRNA (short hairpin RNA) in T6 cells effectively blocked the effects of CL075 stimulation, reversing the changes in MCP-1, TGF-β1 and collagen-α1 expression and accelerating cell migration. Our results indicate that obstructive jaundice is associated with down-regulation of TLR7 and up-regulation of profibrogenic gene expression in HSCs. Selective activation of TLR7 may modulate the profibrogenic phenotype in activated HSCs associated with cholestatic liver injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BJ20112058 | DOI Listing |
Hepatology
September 2024
Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA.
Cholangiopathies comprise a spectrum of chronic intrahepatic and extrahepatic biliary tract disorders culminating in progressive cholestatic liver injury, fibrosis, and often cirrhosis and its sequela. Treatment for these diseases is limited, and collectively, they are one of the therapeutic "black boxes" in clinical hepatology. The etiopathogenesis of the cholangiopathies likely includes disease-specific mediators but also common cellular and molecular events driving disease progression (eg, cholestatic fibrogenesis, inflammation, and duct damage).
View Article and Find Full Text PDFCell Biochem Funct
September 2024
Department of Biomedical Science, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India.
Numerous studies highlight the potential of natural antioxidants, such as those found in foods and plants, to prevent or treat nonalcoholic fatty liver disease (NAFLD). Inflammation is a key factor in the progression from high-fat diet-induced NAFLD to nonalcoholic steatohepatitis (NASH). Injured liver cells and immune cells release inflammatory cytokines, activating hepatic stellate cells.
View Article and Find Full Text PDFStem Cell Res Ther
September 2024
Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina.
Background: The immunomodulatory oligodeoxynucleotide (ODN) IMT504 might harbor antifibrotic properties within the liver.
Methods: Fibrosis models were induced in mice through thioacetamide (TAA) administration and bile-duct ligation. Cre-loxP mice were utilized to identify GLAST + Wnt1 + bone marrow stromal progenitors (BMSPs) and to examine their contribution with cells in the liver.
Elife
August 2024
Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, United States.
HIV disease remains prevalent in the USA and chronic kidney disease remains a major cause of morbidity in HIV-1-positive patients. Host double-stranded RNA (dsRNA)-activated protein kinase (PKR) is a sensor for viral dsRNA, including HIV-1. We show that PKR inhibition by compound C16 ameliorates the HIV-associated nephropathy (HIVAN) kidney phenotype in the Tg26 transgenic mouse model, with reversal of mitochondrial dysfunction.
View Article and Find Full Text PDFBMC Genomics
August 2024
Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that disrupts hepatic function leading to steatotic liver disease (SLD)-like pathologies, such as steatosis, steatohepatitis, and fibrosis. These effects are mediated by the aryl hydrocarbon receptor following changes in gene expression. Although diverse cell types are involved, initial cell-specific changes in gene expression have not been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!