Mesenchymal stem cells (MSCs) represent one of the most promising stem cells for a number of degenerative conditions due to their multipotency, immunoprivileged properties, and easy expansion in vitro. However, the limited life span of primary MSCs during in vitro expansion greatly hampers their use in clinical applications and basic research. Immortalization of MSCs will overcome this problem and may provide a very useful tool with which to study MSC biology. Here we showed that silencing p53 expression with lentivirus-mediated small interfering RNA delayed the senescence by extended passage number, but was not sufficient to immortalize primary MSCs. However, combination of p53 knockdown and human telomerase reverse transcriptase (hTERT) overexpression was sufficient to immortalize MSCs. The effects of p53 knockdown and hTERT overexpression on MSCs, including proliferation, colony formation, and differentiation, were determined. The resultant immortal MSCs displayed similar surface antigen profile to primary MSCs and retained MSC differentiation potential. Gene expression profile showed high similarity between immortalized MSCs and primary MSCs. In addition, immortalization-associated genes were also identified. Our data suggested immortalization of MSCs related to upregulation of cell cycle regulator and DNA repair genes enabling them to bypass cell crisis and complete mitosis. This study provides a new cellular model for basic studies of MSCs and understanding of the molecular basis of MSC immortalization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545350PMC
http://dx.doi.org/10.1089/scd.2012.0222DOI Listing

Publication Analysis

Top Keywords

primary mscs
16
stem cells
12
p53 knockdown
12
mscs
12
molecular basis
8
mesenchymal stem
8
combination p53
8
knockdown human
8
human telomerase
8
telomerase reverse
8

Similar Publications

Relevance of RNA to the therapeutic efficacy of mesenchymal stromal/stem cells extracellular vesicles.

RNA Biol

December 2025

Paracrine Therapeutics Pte. Ltd, Tai Seng Exchange, Singapore, Singapore.

Mesenchymal Stromal/Stem Cells (MSCs) are among the most frequently studied cell types in clinical trials, and their small extracellular vesicles (sEVs) are now being extensively investigated for therapeutic applications. The RNA cargo of MSC-sEVs, particularly miRNAs and mRNAs, is widely believed to be a key therapeutic component of these vesicles. In this review, we critically examine using first principles and peer-reviewed literature, whether MSC- extracellular vesicles (MSC-EVs) can deliver sufficient quantity of functional miRNA or mRNA to target compartments within recipient cells to elicit a pharmacological response.

View Article and Find Full Text PDF

Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) can be isolated from umbilical cords which is abundant and easy to obtain. Due to their potent immunosuppressive properties, multilineage differentiation potential, and lack of ethical issues, WJ-MSCs are considered a promising candidate for therapeutic applications. However, large-scale in vitro expansion is necessary to obtain enough cells for therapeutic purposes.

View Article and Find Full Text PDF

A programmable arthritis-specific receptor for guided articular cartilage regenerative medicine.

Osteoarthritis Cartilage

December 2024

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA; Center for Bone Biology, Vanderbilt University, Nashville, TN 37212, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37212, USA. Electronic address:

Objective: Investigational cell therapies have been developed as disease-modifying agents for the treatment of osteoarthritis (OA), including those that inducibly respond to inflammatory factors driving OA progression. However, dysregulated inflammatory cascades do not specifically signify the presence of OA. Here, we deploy a synthetic receptor platform that regulates cell behaviors in an arthritis-specific fashion to confine transgene expression to sites of cartilage degeneration.

View Article and Find Full Text PDF

Profiling the extracellular vesicles of two human placenta-derived mesenchymal stromal cell populations.

Exp Cell Res

December 2024

Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC, 3052, Australia; University of Melbourne Department of Obstetrics and Gynaecology and Newborn Health, Royal Women's Hospital, Parkville, VIC, 3052, Australia. Electronic address:

Increasing evidence shows extracellular vesicles (EVs) are primarily responsible for the beneficial effects of cell-based therapies. EVs derived from mesenchymal stromal cells (MSCs) show promise as a source of EVs for cell-free therapies. The human placental fetal-maternal interface is a rich and abundant source of MSCs from which EVs can be isolated.

View Article and Find Full Text PDF

Heparin Differentially Regulates the Expression of Specific miRNAs in Mesenchymal Stromal Cells.

Int J Mol Sci

November 2024

Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria.

In regenerative medicine, stromal cells are supposed to play an important role by modulating immune responses and differentiating into various tissue types. The aim of this study was to investigate the influence of heparin, frequently used as an anticoagulant in human platelet lysate (HPL)-supplemented cell cultures, on the expression of non-coding RNA species, particularly microRNAs (miRNA), which are pivotal regulators of gene expression. Through genomic analysis and quantitative RT-PCR, we assessed the differential impact of heparin on miRNA expression in various stromal cell types, derived from human bone marrow, umbilical cord and white adipose tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!