We developed a high throughput yeast two-hybrid (Y2H) assay for screening pools of combinatorial cyclic peptide preys against pools of bait proteins. The assay used the PI (pooling with imaginary tags) deconvolution pooling strategy to generate pools of baits and a random pooling strategy to generate pools of cyclic peptide preys. Haploid yeast, expressing pools of baits or preys, were arrayed and mated to each other to generate diploid arrays, where the yeast express both baits and preys. Diploid arrays were scored for activation of the Y2H reporter genes. We used this Y2H pooling strategy, referred to as 'PI-pool-on-random pool', to screen a cyclic peptide library for interactions against Bcr-Abl domains. Seven Bcr-Abl domain baits and LexA control were pooled using the PI deconvolution pooling strategy. The cyclic peptide library was randomly arrayed into pools of ~1000 members. Cyclic peptides were isolated for six of seven Bcr-Abl domain baits. The PI-pool-on-random pooling Y2H assay using high stringency Y2H reporter genes produced no false positives, while missing 20% of real interactions. The high specificity of the PI-pool-on-random pooling Y2H assay eliminates the need to validate interactions. Pooling of baits and preys allows large prey libraries to be screened against multiple baits and takes advantage of PI-deconvolution to determine protein interactions with high sensitivity and specificity. The scalability of this assay allows the peptide preys to be isolated in a high throughput manner against a large number of baits and provides an avenue for generating affinity agents against entire proteomes in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/protein/gzs029 | DOI Listing |
Pharmaceutics
December 2024
Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 40700, Israel.
Here, we report on the synthesis and biological evaluation of a novel peptide-drug conjugate, P6-SN38, which consists of the EGFR-specific short cyclic peptide, P6, and the Topo I inhibitor SN38, which is a bioactive metabolite of the anticancer drug irinotecan. SN38 is attached to the peptide at position 20 of the E ring's tertiary hydroxyl group via a mono-succinate linker. The developed peptide-drug conjugate (PDC) exhibited sub-micromolar anticancer activity on EGFR-positive (EGFR+) cell lines but no effect on EGFR-negative (EGFR-) cells.
View Article and Find Full Text PDFMicroorganisms
December 2024
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.
Root-knot nematodes (RKNs) are pathogens that endanger a wide range of crops and cause serious global agricultural losses. In this study, we investigated metabolites of the endoparasitic fungus YMF1.01751, with the expectation of discovering valuable biocontrol compounds.
View Article and Find Full Text PDFPathogens
December 2024
M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
Today, is still the most common cause of both local and life-threatening systemic candidiasis. The spread of resistant fungal strains has resulted in an urgent need to search for new promising antimycotics. Here, we investigated the antifungal action of the tobacco defensin NaD1 against susceptible and resistant to azoles and echinocandins strains of .
View Article and Find Full Text PDFPathogens
November 2024
Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea.
The emergence of antibiotic-resistant () is a pressing threat in clinical settings. Colistin is currently a widely used treatment for multidrug-resistant , serving as the last line of defense. However, reports of colistin-resistant strains of have emerged, underscoring the urgent need to develop alternative medications to combat these serious pathogens.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Experimental Medicine, Acad. Pavlov Street, 12, 197022 St. Petersburg, Russia.
Over the last decades, significant progress has been made in studying agonistic and antagonistic hematopoietic peptides. The main disadvantage of this class of peptides is their low stability with noninvasive administration methods, which limits the widespread use of hematopoiesis-regulated peptide drugs in medical practice. The aim of this work is to study novel peptidomimetics with hematopoietic activity sustained in invasive and oral administration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!