Matrix effects (ion suppression/enhancement) are a well-observed phenomenon in analyses of biological matrices by high-performance liquid chromatography-mass spectrometry (LC-MS). However, few simple solutions for detecting and minimizing these adverse effects have been described so far in multianalyte analysis, especially in the field of doping control. This study describes an exhaustive characterization of matrix effects in one hundred urine samples fortified with 41 analytes (glucocorticoids and diuretics). It introduces a novel marker to identify samples in which the reliability of the results is compromised because of acute ion suppression. This new strategy strengthens the rigor of the analysis for screening purposes. Once the matrix effect is identified, a selective sample preparation is introduced to minimize the adverse ion suppression effect. That selective extraction together with the use of a deuterated internal standard permits enhancing the ruggedness of the estimation of glucocorticoid concentration in urine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2012.06.007 | DOI Listing |
J Gastroenterol
December 2024
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
ACS Nano
December 2024
State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 210009, China.
Array-based sensing technology holds immense potential for discerning the intricacies of biological systems. Nevertheless, developing a universal strategy for simultaneous identification of diverse types of multianalytes and meeting the diagnostic needs of a range of multiclassified clinical diseases poses substantial challenges. Herein, we introduce a combination method for constructing sensor arrays by assembling two types of group-specific elements.
View Article and Find Full Text PDFEnviron Int
December 2024
Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria. Electronic address:
Purpose: This study aimed to stratify patients with locally advanced rectal cancer (LARC) based on their response to neoadjuvant chemoradiation therapy (nCRT) using DNA damage response (DDR)-related proteins measured in peripheral blood monocytes (PBMCs). We optimized and validated an innovative assay to quantify these proteins, providing a predictive framework for nCRT response.
Experimental Design: We used PBMCs collected from LARC patients either before or after standard course of ∼5.
J Hazard Mater
November 2024
Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands. Electronic address:
Exposure to pesticides is one of the main drivers of global bee decline. However, the occurrence of pesticides in bee-attracting crops remains underexposed due to the lack of efficient on-site screening approaches for multi-analyte monitoring. Utilizing color-encoded superparamagnetic microspheres, we constructed a portable 8-plex indirect competitive microsphere-based immunoassay for the simultaneous determination of multiple bee-hazardous residues (Bee-Plex).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!