The timing and magnitude of an escape reaction is often the determining factor governing a copepod's success at avoiding predation. Copepods initiate rapid and directed escapes in response to fluid signals created by predators; however little is known about how copepods modulate their behavior in response to additional sensory input. This study investigates the effect of light level on the escape behavior of Calanus finmarchicus. A siphon flow was used to generate a consistent fluid signal and the behavioral threshold and magnitude of the escape response was quantified in the dark and in the light. The results show that C. finmarchicus initiated their escape reaction further from the siphon and traveled with greater speed in the light than in the dark. However, no difference was found in the escape distance. These results suggest that copepods use information derived from multiple sensory inputs to modulate the sensitivity and strength of the escape in response to an increase risk of predation. Population and IBM models that predict optimal vertical distributions of copepods in response to visual predators need to consider changes in the copepod's behavioral thresholds when predicting predation risk within the water column.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384626 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0039594 | PLOS |
Curr Vasc Pharmacol
January 2025
Department of Cardiology, Athens University School of Medicine, Athens, Greece.
Introduction/objective: Atrial fibrillation (AF) could present with slow ventricular-response; bradycardia could facilitate the emergence of AF. The conviction that one "does not succumb" from bradycardia as an escape rhythm will emerge unless one sustains a fatal injury following syncope is in stark difference with ventricular tachyarrhythmia (VA), which may promptly cause cardiac arrest. However, this is not always the case, as a life-threatening situation may emerge during the bradycardic episode, i.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Immune responses against tumor antigens play a role in confining tumor growth. In response, cancer cells developed several mechanisms to bypass or defeat these anti-tumor immune responses-collectively referred to as "tumor immune evasion". Recent studies have shown that a group of non-coding RNAs, namely circRNAs affect several aspects of tumor immune evasion through regulation of activity of CD8 + T cells, regulatory T cells, natural killer cells, cytokine-induced killer cells or other immune cells.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Department of Urology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
Autophagosome cancer vaccines can promote cross-presentation of multiple tumour antigens and induce cross-reactive T cell responses. However, so far, there is no effective method for obtaining a highly immunogenic autophagosomal cancer vaccine because autophagosomes, once formed, quickly fuse with lysosomes and cannot easily escape from cells. Here we report a functional TiNX nanodot that caps the autophagosome membrane lipid phosphatidylinositol-4-phosphate, blocking the fusion of autophagosomes with lysosomes and producing stable nanodot-coated autophagosomes in tumours.
View Article and Find Full Text PDFTransl Stroke Res
January 2025
Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
The role of chromatin biology and epigenetics in disease progression is gaining increasing recognition. Genes that escape X chromosome inactivation (XCI) can impact neuroinflammation through epigenetic mechanisms. Our previous study has suggested that the X escapee genes Kdm6a and Kdm5c are involved in microglial activation after stroke in aged mice.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer, originating from the malignant proliferation of squamous epithelial cells. However, its pathogenesis remains unclear. To further explore the mechanisms underlying cSCC, we analyzed the data from one single-cell RNA sequencing study and discovered a significant upregulation of tryptophan 2,3-dioxygenase (TDO2) in the cancer-associated fibroblasts (CAFs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!