Unlabelled: Directed differentiation of stem cell lines into intestine-like tissue called induced human intestinal organoids (iHIOs) is now possible (J. R. Spence, C. N. Mayhew, S. A. Rankin, M. F. Kuhar, J. E. Vallance, K. Tolle, E. E. Hoskins, V. V. Kalinichenko, S. I. Wells, A. M. Zorn, N. F. Shroyer, and J. M. Wells, Nature 470:105-109, 2011). We tested iHIOs as a new model to cultivate and study fecal viruses. Protocols for infection of iHIOs with a laboratory strain of rotavirus, simian SA11, were developed. Proof-of-principle analyses showed that iHIOs support replication of a gastrointestinal virus, rotavirus, on the basis of detection of nonstructural viral proteins (nonstructural protein 4 [NSP4] and NSP2) by immunofluorescence, increased levels of viral RNA by quantitative reverse transcription-PCR (qRT-PCR), and production of infectious progeny virus. iHIOs were also shown to support replication of 12/13 clinical rotavirus isolates directly from stool samples. An unexpected finding was the detection of rotavirus infection not only in the epithelial cells but also in the mesenchymal cell population of the iHIOs. This work demonstrates that iHIOs offer a promising new model to study rotaviruses and other gastrointestinal viruses.

Importance: Gastrointestinal viral infections are a major cause of illness and death in children and adults. The ability to fully understand how viruses interact with human intestinal cells in order to cause disease has been hampered by insufficient methods for growing many gastrointestinal viruses in the laboratory. Induced human intestinal organoids (iHIOs) are a promising new model for generating intestine-like tissue. This is the first report of a study using iHIOs to cultivate any microorganism, in this case, an enteric virus. The evidence that both laboratory and clinical rotavirus isolates can replicate in iHIOs suggests that this model would be useful not only for studies of rotaviruses but also potentially of other infectious agents. Furthermore, detection of rotavirus proteins in unexpected cell types highlights the promise of this system to reveal new questions about pathogenesis that have not been previously recognized or investigated in other intestinal cell culture models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398537PMC
http://dx.doi.org/10.1128/mBio.00159-12DOI Listing

Publication Analysis

Top Keywords

human intestinal
16
intestinal organoids
12
ihios
10
intestine-like tissue
8
induced human
8
organoids ihios
8
ihios support
8
support replication
8
clinical rotavirus
8
rotavirus isolates
8

Similar Publications

Whipworms (Trichuris spp) are ubiquitous parasites of humans and domestic and wild mammals that cause chronic disease, considerably impacting human and animal health. Egg hatching is a critical phase in the whipworm life cycle that marks the initiation of infection, with newly hatched larvae rapidly migrating to and invading host intestinal epithelial cells. Hatching is triggered by the host microbiota; however, the physical and chemical interactions between bacteria and whipworm eggs, as well as the bacterial and larval responses that result in the disintegration of the polar plug and larval eclosion, are not completely understood.

View Article and Find Full Text PDF

This case report highlights a potential vaccine safety concern associated with the Pseudorabies virus (PRV) live vaccine, which warrants further investigation for comprehensive understanding. Vaccine-induced immune thrombotic thrombocytopenia (VITT), a novel syndrome of adverse events following adenovirus vector COVID-19 vaccines, was observed after vaccination with Zoetis PR-VAC PLUS. This led to a 100% morbidity and high mortality among PRV-free Danish purebred pigs from Danish Genetics Co.

View Article and Find Full Text PDF

coordinates the IL-10 inducing activity of .

Microbiol Spectr

January 2025

Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

Unlabelled: The intestine is home to a complex immune system that is engaged in mutualistic interactions with the microbiome that maintain intestinal homeostasis. A variety of immune-derived anti-inflammatory mediators have been uncovered and shown to be critical for maintaining these beneficial immune-microbiome relationships. Notably, the gut microbiome actively invokes the induction of anti-inflammatory pathways that limit the development of microbiome-targeted inflammatory immune responses.

View Article and Find Full Text PDF

Mucus plays an integral role for the barrier function of many epithelial tissues. In the human airways, mucus is constantly secreted to capture inhaled microbes and pollutants and cleared away through concerted ciliary motion. Many important respiratory diseases exhibit altered mucus flowability and impaired clearance, contributing to respiratory distress and increased risk of infections.

View Article and Find Full Text PDF

We examine disease-specific and cross-disease functions of the human gut microbiome by colonizing germ-free mice, at risk for inflammatory arthritis, colitis, or neuroinflammation, with over 100 human fecal microbiomes from subjects with rheumatoid arthritis, ankylosing spondylitis, multiple sclerosis, ulcerative colitis, Crohn's disease, or colorectal cancer. We find common inflammatory phenotypes driven by microbiomes from individuals with intestinal inflammation or inflammatory arthritis, as well as distinct functions specific to microbiomes from multiple sclerosis patients. Inflammatory disease in mice colonized with human microbiomes correlated with systemic inflammation, measured by C-reactive protein, in the human donors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!