Cell-surface sensors are powerful tools to elucidate cell functions including cell signaling, metabolism, and cell-to-cell communication. These sensors not only facilitate our understanding in basic biology but also advance the development of effective therapeutics and diagnostics. While genetically encoded fluorescent protein/peptide sensors have been most popular, emerging cell surface sensor systems including polymer-, nanoparticle-, and nucleic acid aptamer-based sensors have largely expanded our toolkits to interrogate complex cellular signaling and micro- or nano-environments. In particular, cell-surface sensors that interrogate in vivo cellular microenvironments represent an emerging trend in the development of next generation tools which biologists may routinely apply to elucidate cell biology in vivo and to develop new therapeutics and diagnostics. This review focuses on the most recent development in areas of cell-surface sensors. We will first discuss some recently reported genetically encoded sensors that were used for monitoring cellular metabolites, proteins, and neurotransmitters. We will then focus on the emerging cell surface sensor systems with emphasis on the use of DNA aptamer sensors for probing cell signaling and cell-to-cell communication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425956 | PMC |
http://dx.doi.org/10.1002/wnan.1179 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!