Chronic lithium feeding reduces upregulated brain arachidonic acid metabolism in HIV-1 transgenic rat.

J Neuroimmune Pharmacol

Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Bldg. 9, Rm. 1S126 MSC 0947, Bethesda, MD 20892, USA.

Published: September 2012

AI Article Synopsis

  • HIV-1 transgenic rats, a model for studying neurocognitive disorders related to HIV, show increased brain arachidonic acid metabolism and neuroinflammation by 7 months of age.
  • Lithium has been shown to reduce arachidonic acid metabolism in models of neuroinflammation and was tested on these rats to see if it could also decrease their heightened metabolism.
  • The study found that lithium treatment notably reduced arachidonic acid metabolism in the brain, suggesting it could be beneficial in improving cognitive issues and providing neuroprotection in HIV-1 patients suffering from neurocognitive disorders.

Article Abstract

HIV-1 transgenic (Tg) rats, a model for human HIV-1 associated neurocognitive disorder (HAND), show upregulated markers of brain arachidonic acid (AA) metabolism with neuroinflammation after 7 months of age. Since lithium decreases AA metabolism in a rat lipopolysaccharide model of neuroinflammation, and may be useful in HAND, we hypothesized that lithium would dampen upregulated brain AA metabolism in HIV-1 Tg rats. Regional brain AA incorporation coefficients k* and rates J ( in ), markers of AA signaling and metabolism, were measured in 81 brain regions using quantitative autoradiography, after intravenous [1-(14) C]AA infusion in unanesthetized 10-month-old HIV-1 Tg and age-matched wildtype rats that had been fed a control or LiCl diet for 6 weeks. k* and J ( in ) for AA were significantly higher in HIV-1 Tg than wildtype rats fed the control diet. Lithium feeding reduced plasma unesterified AA concentration in both groups and J ( in ) in wildtype rats, and blocked increments in k* (19 of 54 regions) and J ( in ) (77 of 81 regions) in HIV-1 Tg rats. These in vivo neuroimaging data indicate that lithium treatment dampened upregulated brain AA metabolism in HIV-1 Tg rats. Lithium may improve cognitive dysfunction and be neuroprotective in HIV-1 patients with HAND through a comparable effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478068PMC
http://dx.doi.org/10.1007/s11481-012-9381-0DOI Listing

Publication Analysis

Top Keywords

upregulated brain
12
metabolism hiv-1
12
hiv-1 rats
12
wildtype rats
12
hiv-1
9
lithium feeding
8
brain arachidonic
8
arachidonic acid
8
acid metabolism
8
hiv-1 transgenic
8

Similar Publications

In a series of studies on blood-brain barrier transportable peptides, a soybean dipeptide, Tyr-Pro, penetrated the mouse brain parenchyma after oral intake and improved short and long memory impairment in acute Alzheimer's model mice. Here, we aimed to clarify the anti-dementia effects of this peptide administered to SAMP8 mice prior to dementia onset. At the end of the 25-week protocol in 16-week-old SAMP8 mice, Tyr-Pro (10 mg/kg/day) significantly improved the reduced spatial learning ability compared with that in the control and amino acid (Tyr + Pro) groups as indicated by the results of Morris water maze tests conducted for five consecutive days.

View Article and Find Full Text PDF

Malate initiates a proton-sensing pathway essential for pH regulation of inflammation.

Signal Transduct Target Ther

December 2024

Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.

Metabolites can double as a signaling modality that initiates physiological adaptations. Metabolism, a chemical language encoding biological information, has been recognized as a powerful principle directing inflammatory responses. Cytosolic pH is a regulator of inflammatory response in macrophages.

View Article and Find Full Text PDF

Glioblastoma is immunologically "cold" and resistant to single-agent immune-checkpoint inhibitors (ICI). Our previous study of neoadjuvant pembrolizumab in surgically-accessible recurrent glioblastoma identified a molecular signature of response to ICI and suggested that neoadjuvant pembrolizumab may improve survival. To increase the power of this observation, we enrolled an additional 25 patients with a primary endpoint of evaluating the cell cycle gene signature associated with neoadjuvant pembrolizumab and performed bulk-RNA seq on resected tumor tissue (NCT02852655).

View Article and Find Full Text PDF

Taltirelin, an orally effective thyrotropin-releasing hormone analog, significantly improves motor impairments in rat models of Parkinson's disease (PD) and enhances dopamine release within the striatum. However, the underlying mechanism remains unclear. In this study, a variety of in vivo and in vitro methods, including transcriptomic analysis, were employed to elucidate the effects of Taltirelin on cellular composition and signaling pathways in the striatum of hemi-PD rats.

View Article and Find Full Text PDF

Background: Maintaining autophagic homeostasis has been proved to play an important role in Alzheimer's disease.

Object: The aim of this study was to investigate the effect of Fuzhisan(FZS) on autophagic function in Alzheimer's disease and to elucidate its potential mechanism through the P62 regulatory pathways.

Methods: FZS was extracted by water extraction-rotary evaporation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!