The binding interactions of 1-naphthol with effluent and whole natural dissolved organic matter (DOM) samples were analyzed by using a fluorescence quenching technique. Nonfractionated DOM samples from Lake Biwa (Japan), creek water, treated sewage effluents, and an extracted Lake Biwa fulvic acid (LBFA) standard were used as quenchers and compared at the same 1-naphthol with DOM organic carbon ratios found for low natural dissolved organic carbon (DOC) levels (∼4.5 mg/L). Natural and effluent DOM (eDOM) samples were characterized by the DOC level, relative hydrophobicity (RH%), ultraviolet (UV)-visible absorbance and fluorescence excitation emission spectroscopy. These parameters were compared with those of the reference LBFA standard. Concave-up Stern-Volmer plots accounted for both the partitioning and the adsorptive binding in the eDOM-polycyclic aromatic hydrocarbons (PAH) system as compared with the nonspecific partitioning in the natural DOM-PAH system. Strong linear regressions (r(2)  > 0.80) between the log K(DOC) values, the RH%, the UV absorbances, and the Fl(340-435) -UV(340) indices for the structural composition and molecular weights of the DOM samples were obtained. These results suggest that low molecular weight microbial fulvic acid (<800 Da) is dominant in the eDOM-PAH binding interactions, as well as in the distinct molecular structure of the eDOM samples, which resulted in fivefold to sixfold higher binding magnitude for 1-naphthol than for the other samples.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.1934DOI Listing

Publication Analysis

Top Keywords

dissolved organic
12
lake biwa
12
fulvic acid
12
dom samples
12
binding interactions
8
interactions 1-naphthol
8
organic matter
8
treated sewage
8
microbial fulvic
8
natural dissolved
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!