Wear and mechanical properties of composite resins consisting of different filler particles.

Odontology

Department of Dental Materials Science, The Nippon Dental University School of Life, Dentistry at Niigata, 1-8 Hamaura-cho, Niigata, Niigata, 951-8580, Japan.

Published: July 2013

To investigate the effects of different fillers and their contents on the wear of composite resins, four composites (CS: non-porous spherical silica, AS: porous spherical silica, AZ: porous spherical zirconium silicate, and IS: non-porous irregular-shaped silica) were experimentally prepared using different fillers (CS, AZ, AS and IS). Simulated occlusal wear and toothbrush wear were evaluated for these composites and their worn surfaces were observed. The mechanical properties (flexural strength, elastic modulus and hardness) of these composites were determined to examine the relationships between wear and these mechanical properties. CS showed the highest occlusal wear, but the lowest toothbrush wear among four composites. AS and AZ had lower occlusal wear than CS and IS, while their toothbrush wear was higher than CS and close to that of IS. All composites showed increase in the occlusal wear as filler content increased. CS and IS showed decrease in the toothbrush wear as the filler content increased, whereas AS and AZ did not. The occlusal wear surfaces of CS and IS had concavities, while those of AZ and AS were relatively smooth with flattened filler. The toothbrush wear surfaces of CS and IS revealed the extrusion of filler from resin matrix, whereas those of AZ and AS were smooth with flattened filler. The toothbrush wear of CS and IS decreased as the mechanical properties increased, whereas those of AS and AZ did not. The occlusal wear of all composites increased as the mechanical properties increased, which would not reflect effects of these mechanical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10266-012-0074-1DOI Listing

Publication Analysis

Top Keywords

mechanical properties
24
occlusal wear
24
toothbrush wear
24
wear
15
wear mechanical
8
composite resins
8
spherical silica
8
silica porous
8
porous spherical
8
wear toothbrush
8

Similar Publications

MR Elastography Using the Gravitational Transducer.

Sensors (Basel)

December 2024

Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London WC2R 2LS, UK.

MR elastography is a non-invasive imaging technique that provides quantitative maps of tissue biomechanical properties, i.e., elasticity and viscosity.

View Article and Find Full Text PDF

Research on the Stress Characteristics of Reuse of Semi-Rigid Base.

Sensors (Basel)

December 2024

School of Highway, Chang'an University, Middle Section of South Erhuan Road, Xi'an 710064, China.

Semi-rigid bases are widely used in road construction due to their excellent properties, high rigidity, and frost resistance, and they have been in service for many years. However, as the service life increases, the maintenance demands also grow, with traditional maintenance methods still being the primary approach. Based on a typical case using ground-penetrating radar (GPR) technology, this study explores the issue of cracks in semi-rigid bases and their impact on overlay layers.

View Article and Find Full Text PDF

Realisation of an Application Specific Multispectral Snapshot-Imaging System Based on Multi-Aperture-Technology and Multispectral Machine Learning Loops.

Sensors (Basel)

December 2024

Group of Quality Assurance and Industrial Image Processing, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Gustav-Kirchhoff-Platz 2, 98693 Ilmenau, Germany.

Multispectral imaging (MSI) enables the acquisition of spatial and spectral image-based information in one process. Spectral scene information can be used to determine the characteristics of materials based on reflection or absorption and thus their material compositions. This work focuses on so-called multi aperture imaging, which enables a simultaneous capture (snapshot) of spectrally selective and spatially resolved scene information.

View Article and Find Full Text PDF

Diabetes is a growing global health crisis that requires effective therapeutic strategies to optimize treatment outcomes. This study aims to address this challenge by developing and characterizing extended-release polymeric matrix tablets containing metformin hydrochloride (M-HCl), a first-line treatment for type 2 diabetes, and honokiol (HNK), a bioactive compound with potential therapeutic benefits. The objective is to enhance glycemic control and overall therapeutic outcomes through an innovative dual-drug delivery system.

View Article and Find Full Text PDF

Advances in Research of Hydrogel Microneedle-Based Delivery Systems for Disease Treatment.

Pharmaceutics

December 2024

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.

Microneedles (MNs), composed of multiple micron-scale needle-like structures attached to a base, offer a minimally invasive approach for transdermal drug delivery by penetrating the stratum corneum and delivering therapeutic agents directly to the epidermis or dermis. Hydrogel microneedles (HMNs) stand out among various MN types due to their excellent biocompatibility, high drug-loading capacity, and tunable drug-release properties. This review systematically examines the matrix materials and fabrication methods of HMN systems, highlighting advancements in natural and synthetic polymers, and explores their applications in treating conditions such as wound healing, hair loss, cardiovascular diseases, and cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!