Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The reactions of the phosphinidene-bridged complex [Mo(2)Cp(2)(μ-PH)(η(6)-HMes*)(CO)(2)] (1), the arylphosphinidene complexes [Mo(2)Cp(2)(μ-κ(1):κ(1),η(6)-PMes*)(CO)(2)] (2), [Mo(2)Cp(2)(μ-κ(1):κ(1),η(4)-PMes*)(CO)(3)] (3), [Mo(2)Cp(2)(μ-κ(1):κ(1),η(4)-PMes*)(CO)(2)(CN(t)Bu)] (4), and the cyclopentadienylidene-phosphinidene complex [Mo(2)Cp(μ-κ(1):κ(1),η(5)-PC(5)H(4))(η(6)-HMes*)(CO)(2)] (5) toward different sources of chalcogen atoms were investigated (Mes* = 2,4,6-C(6)H(2)(t)Bu(3); Cp = η(5)-C(5)H(5)). The bare elements were appropriate sources in all cases except for oxygen, in which case dimethyldioxirane gave the best results. Complex 1 reacted with the mentioned chalcogen sources at low temperature, to give the corresponding chalcogenophosphinidene derivatives [Mo(2)Cp(2){μ-κ(2)(P,Z):κ(1)(P)-ZPH}(η(6)-HMes*)(CO)(2)] (Z = O, S, Se, Te; P-Se = 2.199(2) Å). The arylphosphinidene complex 2 was the least reactive substrate and gave only chalcogenophosphinidene derivatives [Mo(2)Cp(2)(μ-κ(2)(P,Z):κ(1)(P),η(6)-ZPMes*)(CO)(2)] for Z = O and S (P-O = 1.565(2) Å), along with small amounts of the dithiophosphorane complex [Mo(2)Cp(2)(μ-κ(2)(P,S):κ(1)(S'),η(6)-S(2)PMes*)(CO)(2)], in the reaction with sulfur. The η(4)-complexes 3 and 4 reacted with sulfur and gray selenium to give the corresponding derivatives [Mo(2)Cp(2)(μ-κ(2)(P,Z):κ(1)(P),η(4)-ZPMes*)(CO)(2)L] (L = CO, CN(t)Bu), obtained respectively as syn (Z = Se; P-Se = 2.190(1) Å for L = CO) or a mixture of syn and anti isomers (Z = S; P-S = 2.034(1)-2.043(1) Å), with these diastereoisomers differing in the relative positioning of the chalcogen atom and the terminal ligand at the metallocene fragment, relative to the Mo(2)P plane. The cyclopentadienylidene compound 5 reacted with all chalcogens, and gave with good yields the chalcogenophosphinidene derivatives [Mo(2)Cp(μ-κ(2)(P,Z):κ(1)(P),η(5)-ZPC(5)H(4))(η(6)-HMes*)(CO)(2)] (Z = S, Se, Te), these displaying in solution equilibrium mixtures of the corresponding cis and trans isomers differing in the relative positioning of the cyclopentadienylic rings with respect to the MoPZ plane in each case. The sulfur derivative reacted with excess sulfur to give the dithiophosphorane complex [Mo(2)Cp(μ-κ(2)(P,S):κ(1)(S'),η(5)-S(2)PC(5)H(4))(η(6)-HMes*)(CO)(2)] (P-S = 2.023(4) and 2.027(4) Å). The structural and spectroscopic data for all chalcogenophosphinidene complexes suggested the presence of a significant π(P-Z) bonding interaction within the corresponding MoPZ rings, also supported by Density Functional Theory calculations on the thiophosphinidene complex syn-[Mo(2)Cp(2)(μ-κ(2)(P,S):κ(1)(P),η(4)-SPMes*)(CO)(3)].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic300869z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!