Streptococcus oralis, belonging to the oral viridans group streptococci, has been detected in human cardiovascular lesions including infective endocarditis and atheromatous plaques. The organism has coaggregation receptor polysaccharides (RPS) on the cell wall, which function as receptors for surface adhesins on other members of the oral biofilm community. The present study examined the capacity of S. oralis RPS to induce inflammatory responses in human aortic endothelial cells (HAECs). Purified RPS was used to stimulate HAECs, and the induction of cytokines, adhesion molecules and Toll-like receptors (TLRs) was examined. Involvement of RPS in HAEC invasion by S. oralis was also examined. RPS-stimulated HAECs produced more cytokines (interleukin-6, interleukin-8 and monocyte chemoattractant protein-1) and intercellular adhesion molecule-1 than non-stimulated HAECs. The messenger RNA (mRNA) expression of cytokines and adhesion molecules in RPS-stimulated HAECs increased markedly compared with that in non-stimulated HAECs. Upregulation of TLR-2 mRNA expression was demonstrated in RPS-stimulated HAECs. Moreover, TLR-2 mRNA expression and cytokine production were reduced by the incubation of HAECs with inhibitors against p38 mitogen-activated protein kinase and nuclear factor-κB. An RPS-defective mutant of S. oralis showed greater invasion into HAECs than an RPS-possessing strain. However, HAECs invaded by the RPS-defective mutant produced less cytokines than HAECs invaded by the RPS-possessing strain, indicating that RPS can stimulate HAECs intracellularly. These results suggest that S. oralis RPS may be an important contributor to the pathogenesis of cardiovascular diseases such as infective endocarditis and atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.2041-1014.2012.00646.xDOI Listing

Publication Analysis

Top Keywords

haecs
12
rps-stimulated haecs
12
mrna expression
12
streptococcus oralis
8
coaggregation receptor
8
receptor polysaccharides
8
induce inflammatory
8
inflammatory responses
8
responses human
8
human aortic
8

Similar Publications

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

Background: Here, we assessed the role of the advanced glycation end-product (AGE) precursor methylglyoxal (MGO) and its non-crosslinking AGE MGO-derived hydroimidazolone (MGH)-1 in aortic stiffening and explored the potential of a glycation stress-lowering compound (Gly-Low) to mitigate these effects.

Methods: Young (3-6 month) C57BL/6 mice were supplemented with MGO (in water) and Gly-Low (in chow). Aortic stiffness was assessed in vivo via pulse wave velocity (PWV) and ex vivo through elastic modulus.

View Article and Find Full Text PDF

Application of a dynamic colonic gastrointestinal digestion model to red wines: a study of flavanol metabolism by the gut microbiota and the cardioprotective activity of microbial metabolites.

Food Funct

January 2025

Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja-UR, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, - salida 13), 26007 Logroño, Spain.

Over the last decade, research has emphasized the role of the microbiome in regulating cardiovascular physiology and disease progression. Understanding the interplay between wine polyphenols, the gut microbiota, and cardiovascular health could provide valuable insights for uncovering novel therapeutic strategies aimed at preventing and managing cardiovascular disease. In this study, two commercial red wines were subjected to dynamic gastrointestinal digestion (GIS) to monitor the flavanol-microbiota interaction by evaluating the resulting microbial metabolites.

View Article and Find Full Text PDF

Endothelial Gsα deficiency promotes ferroptosis and exacerbates atherosclerosis in apolipoprotein E-deficient mice via the inhibition of NRF2 signaling.

Acta Pharmacol Sin

January 2025

State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.

The importance of ferroptosis in the occurrence and progression of atherosclerosis is gradually being recognized. The stimulatory G protein α subunit (Gsα) plays a crucial role in the physiology of endothelial cells (ECs). Our previous study showed that endothelial Gsα could regulate angiogenesis and preserve endothelial permeability.

View Article and Find Full Text PDF

Scale-Up of Human Amniotic Epithelial Cells Through Regulation of Epithelial-Mesenchymal Plasticity Under Defined Conditions.

Adv Sci (Weinh)

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China.

Human amniotic epithelial cells (hAECs) have shown excellent efficacy in clinical research and have prospective applications in the treatment of many diseases. However, the properties of the hAECs and their proliferative mechanisms remain unclear. Here, single-cell RNA sequencing (scRNA-seq) is performed on hAECs obtained from amniotic tissues at different gestational ages and passages during in vitro culture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!