Rhoptries are specialized secretory organelles characteristic of single cell organisms belonging to the clade Apicomplexa. These organelles play a key role in the invasion process of host cells by accumulating and subsequently secreting an unknown number of proteins mediating host cell entry. Despite their essential role, little is known about their biogenesis, components and targeting determinants. Here, we report on a conserved apicomplexan protein termed Armadillo Repeats-Only (ARO) protein that we localized to the cytosolic face of Plasmodium falciparum and Toxoplasma gondii rhoptries. We show that the first 20 N-terminal amino acids are sufficient for rhoptry membrane targeting. This protein relies on both - myristoylation and palmitoylation motifs - for membrane attachment. Although these lipid modifications are essential, they are not sufficient to direct ARO to the rhoptry membranes. Mutational analysis revealed additional residues within the first 20 amino acids of ARO that play an important role for rhoptry membrane attachment: the positively charged residues R9 and K14. Interestingly, the exchange of R9 with a negative charge entirely abolishes membrane attachment, whereas the exchange of K14 (and to a lesser extent K16) alters only its membrane specificity. Additionally, 17 proteins predicted to be myristoylated and palmitoylated in the first 20 N-terminal amino acids were identified in the genome of the malaria parasite. While most of the corresponding GFP fusion proteins were trafficked to the parasite plasma membrane, two were sorted to the apical organelles. Interestingly, these proteins have a similar motif identified for ARO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-0854.2012.01394.x | DOI Listing |
Poult Sci
December 2024
Guangdong Province Key Laboratory of Livestock Disease Prevention, Key Laboratory of Avian Infuenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Afairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China. Electronic address:
Avian coccidiosis, caused by protozoan parasites of the genus Eimeria, is a globally prevalent and highly pathogenic disease that poses a serious threat to the poultry industry, resulting in significant economic losses. However, the mechanism by which Eimeria species invade host cells remains unclear. Previous studies have identified rhoptry neck protein 2 (RON2) from Eimeria tenella as a critical factor in host cell invasion, but a comprehensive understanding of the role of EtRON2 in host cell invasion and its relationship with E.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA.
is an obligate intracellular parasite, and the delivery of effector proteins from the parasite into the host cell during invasion is critical for invasion itself and for parasite virulence. The effector proteins are released from specialized apical secretory organelles known as rhoptries. While much has been learned recently about the structure and composition of the rhoptry exocytic machinery and the function of individual rhoptry effector proteins that are exocytosed, virtually nothing is known about how the released proteins are translocated across the host cell plasma membrane.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France. Electronic address:
Vet Parasitol
December 2024
College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China. Electronic address:
The Apicomplexa parasitic phylum rhoptry neck protein 2 (RON2) plays a key role in the process of invading host cells. Eimeria tenella, an intracellular protozoan shares a similar conserved invasion pattern. However, whether E.
View Article and Find Full Text PDFJ Immunol Methods
November 2024
Preventive Veterinary Medicine Departament, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil. Electronic address:
Neosporosis is one of the major causes of abortion in cattle, and it is responsible for significant economic losses in those animals. Thus, this study aimed to evaluate indirect ELISA using subcellular fractions of Neospora caninum obtained via sucrose gradient separation. Eighty-five sera from dairy cattle previously tested using indirect immunofluorescence assay (IFA) were used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!