AI Article Synopsis

  • After natural menopause, androstenedione becomes the main hormone in women’s ovaries, and studies show it correlates with increased memory errors in rodents.
  • Current research tested the effects of androstenedione on memory by giving middle-aged ovariectomized rats different doses and having them complete memory tasks.
  • The results indicated that the highest dose of androstenedione impaired both reference memory and the ability to manage memory under higher demands, suggesting it negatively affects cognitive function without significantly altering the GABAergic system involved in memory performance.

Article Abstract

After natural menopause in women, androstenedione becomes the primary hormone secreted by the residual follicle-depleted ovaries. In two independent studies, in rodents that had undergone ovarian follicular depletion, we found that higher endogenous serum androstenedione levels correlated with increased working memory errors. This led to the hypothesis that higher androstenedione levels impair memory. The current study directly tested this hypothesis, examining the cognitive effects of exogenous androstenedione administration in rodents. Middle-aged ovariectomised rats received vehicle or one of two doses of androstenedione. Rats were tested on a spatial working and reference memory maze battery including the water-radial arm maze, Morris water maze (MM) and delay match-to-sample task. Androstenedione at the highest dose impaired reference memory as well as the ability to maintain performance as memory demand was elevated. This was true for both high temporal demand memory retention of one item of spatial information, as well as the ability to handle multiple items of spatial working memory information. We measured glutamic acid decarboxylase (GAD) protein in multiple brain regions to determine whether the gamma-aminobutyric acid (GABA) system relates to androstenedione-induced memory impairments. Results showed that higher entorhinal cortex GAD levels were correlated with worse MM performance, irrespective of androstenedione treatment. These findings suggest that androstenedione, the main hormone produced by the follicle-depleted ovary, is detrimental to working memory, reference memory and memory retention. Furthermore, while spatial reference memory performance might be related to the GABAergic system, it does not appear to be altered with androstenedione administration, at least at the doses used in the current study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625646PMC
http://dx.doi.org/10.1111/j.1460-9568.2012.08194.xDOI Listing

Publication Analysis

Top Keywords

reference memory
16
memory
13
androstenedione levels
12
working memory
12
androstenedione
10
serum androstenedione
8
levels correlated
8
current study
8
androstenedione administration
8
spatial working
8

Similar Publications

Alzheimer's disease (AD) is associated with cognitive impairments which are linked to a deficit in cholinergic function. The objective of this study was to evaluate the ability of TeMac™ to prevent memory impairment in scopolamine-rats model of Alzheimer's disease and by in silico approaches to identify molecules in TeMac™ inhibiting acetylcholinesterase. The cholinergic cognitive dysfunction was induced by intraperitoneal injection of scopolamine (1 mg/kg daily) in male Wistar rats for seven consecutive days.

View Article and Find Full Text PDF

Introduction: Using an Asian cohort with high prevalence of concomitant cerebrovascular disease (CeVD), we evaluated the performance of a plasma immunoassay for tau phosphorylated at threonine 217 (p-tau217) in detecting amyloid beta positivity (Aβ+) on positron emission tomography and cognitive decline, based on a three-range reference, which stratified patients into low-, intermediate-, and high-risk groups for Aβ+.

Methods: Brain amyloid status (Aβ- [n = 142] vs Aβ+ [n = 73]) on amyloid PET scans was assessed along with the plasma ALZpath p-tau217 assay to derive three-range reference points for PET Aβ+ based on 90% sensitivity (lower threshold) and 90% specificity (upper threshold).

Results: Plasma p-tau217 (area under the curve [AUC] = 0.

View Article and Find Full Text PDF

Background: Cognitive networks impairments are common in neuropsychiatric disorders like Attention Deficit Hyperactivity Disorder (ADHD), bipolar disorder (BD), and schizophrenia (SZ). While previous research has focused on specific brain regions, the role of the procedural memory as a type of long-term memory to examine cognitive networks impairments in these disorders remains unclear. This study investigates alterations in resting-state functional connectivity (rs-FC) within the procedural memory network to explore brain function associated with cognitive networks in patients with these disorders.

View Article and Find Full Text PDF

The immune-inflammatory responses on the hypothalamic-pituitary-adrenal axis and the neurovascular unit in perioperative neurocognitive disorder.

Exp Neurol

January 2025

Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:

Perioperative neurocognitive disorders (PNDs) refer to a wide spectrum of cognitive impairment persisting days to even after a year postoperative with significant morbidity and mortality. However, despite much efforts involving perioperative managements, PNDs are still prevalent with no standard preventative and therapeutic strategy. To overcome PNDs, a better understanding of pathophysiology of PNDs is crucial and a large number of studies have proven that immune-inflammatory responses from surgical stress are involved in the abnormal activation of the hypothalamic-pituitary-adrenal (HPA) axis and destabilization of neurovascular unit (NVU) that lead to PNDs.

View Article and Find Full Text PDF

One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!