Percolation generally refers to the phenomenon of abrupt variations in electrical, magnetic, or optical properties caused by gradual volume fraction changes of one component across a threshold in bicomponent systems. Percolation behaviors have usually been observed in macroscopic systems, with most studies devoted to electrical percolation. We report on our observation of plasmonic percolation in Au nanorod core-Pd shell nanostructures. When the Pd volume fraction in the shell consisting of palladium and water approaches the plasmonic percolation threshold, ~70%, the plasmon of the nanostructure transits from red to blue shifts with respect to that of the unshelled Au nanorod. This plasmonic percolation behavior is also confirmed by the scattering measurements on the individual core-shell nanostructures. Quasistatic theory and numerical simulations show that the plasmonic percolation originates from a positive-to-negative transition in the real part of the dielectric function of the shell as the Pd volume fraction is increased. The observed plasmonic percolation is found to be independent of the metal type in the shell. Moreover, compared to the unshelled Au nanorods with similar plasmon wavelengths, the Au nanorod core-Pd shell nanostructures exhibit larger refractive index sensitivities, which is ascribed to the expulsion of the electric field intensity from the Au nanorod core by the adsorbed Pd nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn302220y | DOI Listing |
Polymers (Basel)
November 2024
Federal Research Center, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences (FRC KSC SB RAS), 660036 Krasnoyarsk, Russia.
Nowadays, the Internet of Things (IOT), electronics, and neural interfaces are becoming an integral part of our life. These technologies place unprecedentedly high demands on materials in terms of their mechanical and electrical properties. There are several strategies for forming conductive layers in such composites, e.
View Article and Find Full Text PDFNanoscale
October 2024
Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro 3810-193, Portugal.
The quest for enhancing the upconversion luminescence (UCL) efficiency of rare-earth doped materials has been a common target in nanophotonics research. Plasmonic nanoarchitectures have proven potential for amplifying UCL signals, prompting investigations into localized enhancement effects within noble metal nanostructures. In this work we investigate the localized enhancement of UCL in silver nanowire (AgNW) networks coated with upconversion nanoparticles (UCNPs) by employing hyperspectral microscopy to unveil distinctive regions of local enhancement.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Electrical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas 78666, United States.
Thermally induced dielectric and conductivity properties of an Sn-doped β-GaO (-201) single crystal were investigated by frequency-domain impedance spectroscopy in the frequency window from 100 Hz to 1 MHz with temperatures between 293 and 873 K. The (-201) plane-orientated single crystalline nature and the presence of an Sn dopant in β-GaO were confirmed by X-ray diffraction (XRD) and X-ray photoelectron (XPS) spectroscopy. Two different trends of impedance spectra have been discussed by the modulation of relaxation times and semiconductor to metallic transition after ∼723 K due to activation of a significant number of Sn dopants and their movements with temperature.
View Article and Find Full Text PDFMolecules
August 2024
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China.
Percolating composites exhibiting negative permittivity have garnered considerable attention due to their promising applications in the realm of electromagnetic shielding, innovative capacitance devices, coil-less inductors, etc. Nano carbon powder/polyvinylidene fluoride (CP/PVDF) percolating composites were fabricated that exhibit Drude-type negative-permittivity behavior upon reaching the CP percolation threshold. This phenomenon is attributed to the formation of a plasmonic state within the interconnected CP network, enabling the delocalization of electrons under the alternating electric field.
View Article and Find Full Text PDFAdv Mater
October 2024
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Nam-Gu, Pohang, 37673, Republic of Korea.
Plasmonic nanoparticles can be assembled into a superlattice, to form optical metamaterials, particularly targeting precise control of optical properties such as refractive index (RI). The superlattices exhibit enhanced near-field, given the sufficiently narrow gap between nanoparticles supporting multiple plasmonic resonance modes only realized in proximal environments. Herein, the planar superlattice of plasmonic Au nanohexagons (AuNHs) with precisely controlled geometries such as size, shape, and edge-gaps is reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!