Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A general fractional-order dynamical network model for synchronization behavior is proposed. Different from previous integer-order dynamical networks, the model is made up of coupled units described by fractional differential equations, where the connections between individual units are nondiffusive and nonlinear. We show that the synchronous behavior of such a network cannot only occur, but also be dramatically different from the behavior of its constituent units. In particular, we find that simple behavior can emerge as synchronized dynamics although the isolated units evolve chaotically. Conversely, individually simple units can display chaotic attractors when the network synchronizes. We also present an easily checked criterion for synchronization depending only on the eigenvalues distribution of a decomposition matrix and the fractional orders. The analytic results are complemented with numerical simulations for two networks whose nodes are governed by fractional-order Lorenz dynamics and fractional-order Rössler dynamics, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3701726 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!