Recent studies have shown that capacitance measurements of large arteries provide better prognosis and diagnosis than tests of resistance alone in pulmonary hypertension (Mahapatra et al., 2006, "Relationship of Pulmonary Arterial Capacitance and Mortality in Idiopathic Pulmonary Arterial Hypertension," J. Am. Coll. Cardiol., 47(4), pp. 799-803; Reuben, 1971, "Compliance of the Human Pulmonary Arterial System in Disease," Circ. Res., 29, pp. 40-50]. Decreased arterial capacitance causes increased load to the heart and is the direct result of increased stiffness and elastic modulus of the arterial wall. Here, we validate a pressure-diameter (PD) method for comparing the elastic modulus and collagen engagement for post-hilar pulmonary arteries with a large range of arterial diameter. The tissue mechanics of the post-hilar arteries are not well-characterized in pulmonary hypertension. It is believed that future studies with this method will provide useful insight into the role of passive tissue mechanics of these arteries in the pathophysiology of pulmonary hypertension, eventually improving clinical diagnosis, prognosis, and treatment. Post-hilar pulmonary arteries, excised from healthy and hypertensive calves and healthy cows, were inflated over a range of 0 [mm Hg] to 110 [mm Hg] in an isolated tissue bath. Internal pressure was recorded with an electric pressure catheter. Artery diameter and longitudinal stretch were recorded photographically. Stress-strain data curves were extracted using Lame's law of thick-walled tubes. Radial strips were removed from each section and tested in a uniaxial (MTS) tester for validation. Both the elastic modulus and collagen engagement strain were similar to results obtained by more traditional means. The average difference between measured values of the two methods for collagen engagement strain was 3.3% of the average value of the engagement strain. The average difference between the measured values of the two methods for modulus of elasticity was 7.4% of the average value of the modulus. The maximum, theoretical, relative error for the stress determined with the PD method was calculated at 20.3%. The PD method proved to be a suitable replacement for uniaxial strain tests in comparing collagen engagement strains. The method allowed faster testing of tissues of multiple diameters, while removing the effect of end conditions. The PD method will be of further utility in continued study of tissue mechanics in pulmonary hypertension studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413154 | PMC |
http://dx.doi.org/10.1115/1.4006686 | DOI Listing |
Science
January 2025
Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany.
Incorporation of animal-based foods into early hominin diets has been hypothesized to be a major catalyst of many important evolutionary events, including brain expansion. However, direct evidence of the onset and evolution of animal resource consumption in hominins remains elusive. The nitrogen-15 to nitrogen-14 ratio of collagen provides trophic information about individuals in modern and geologically recent ecosystems (<200,000 years ago), but diagenetic loss of this organic matter precludes studies of greater age.
View Article and Find Full Text PDFCurr Res Physiol
December 2024
Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.
Aging is accompanied by a decline in muscle mass, strength, and physical function, a condition known as sarcopenia. Muscle disuse attributed to decreased physical activity, hospitalization, or illness (e.g.
View Article and Find Full Text PDFLife (Basel)
November 2024
Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland.
Despite the promising potential of cell-based therapies developed using tissue engineering techniques to treat a wide range of diseases, including limbal stem cell deficiency (LSCD), which leads to corneal blindness, their commercialization remains constrained. This is primarily attributable to the limited cell sources, the use of non-standardizable, unscalable, and unsustainable techniques, and the extended manufacturing processes required to produce transplantable tissue-like surrogates. Herein, we present the first demonstration of the potential of a novel approach combining collagen films (CF), hyaluronic acid (HA), human telomerase-immortalized limbal epithelial stem cells (T-LESCs), and macromolecular crowding (MMC) to develop innovative biomimetic substrates for limbal epithelial stem cells (LESCs).
View Article and Find Full Text PDFJMIR Hum Factors
December 2024
Center for Bioethics, Indiana University School of Medicine, Indianapolis, IN, United States.
Background: The rarity that is inherent in rare disease (RD) often means that patients and parents of children with RDs feel uniquely isolated and therefore are unprepared or unsupported in their care. To overcome this isolation, many within the RD community turn to the internet, and social media groups in particular, to gather useful information about their RDs. While previous research has shown that social media support groups are helpful for those affected by RDs, it is unclear what these groups are particularly useful or helpful for patients and parents of children with RDs.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Center for Biotechnology, Anna University, Chennai 600 025, India. Electronic address:
Alpha-ketoglutarate (αKG) dependent Lysyl hydroxylase (LH) is a critical enzyme in the post-translational conversion of lysine into hydroxylysine in collagen triple helix and telopeptide regions. Overexpression of LH increases collagen hydroxylation and covalent cross-linkage, causing fibrosis. Currently, no drugs are available to inhibit LH potentially.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!