A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Validation of a virtual source model for Monte Carlo dose calculations of a flattening filter free linac. | LitMetric

Purpose: A linac delivering intensity-modulated radiotherapy (IMRT) can benefit from a flattening filter free (FFF) design which offers higher dose rates and reduced accelerator head scatter than for conventional (flattened) delivery. This reduction in scatter simplifies beam modeling, and combining a Monte Carlo dose engine with a FFF accelerator could potentially increase dose calculation accuracy. The objective of this work was to model a FFF machine using an adapted version of a previously published virtual source model (VSM) for Monte Carlo calculations and to verify its accuracy.

Methods: An Elekta Synergy linear accelerator operating at 6 MV has been modified to enable irradiation both with and without the flattening filter (FF). The VSM has been incorporated into a commercially available treatment planning system (Monaco™ v 3.1) as VSM 1.6. Dosimetric data were measured to commission the treatment planning system (TPS) and the VSM adapted to account for the lack of angular differential absorption and general beam hardening. The model was then tested using standard water phantom measurements and also by creating IMRT plans for a range of clinical cases.

Results: The results show that the VSM implementation handles the FFF beams very well, with an uncertainty between measurement and calculation of <1% which is comparable to conventional flattened beams. All IMRT beams passed standard quality assurance tests with >95% of all points passing gamma analysis (γ < 1) using a 3%/3 mm tolerance.

Conclusions: The virtual source model for flattened beams was successfully adapted to a flattening filter free beam production. Water phantom and patient specific QA measurements show excellent results, and comparisons of IMRT plans generated in conventional and FFF mode are underway to assess dosimetric uncertainties and possible improvements in dose calculation and delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.4709601DOI Listing

Publication Analysis

Top Keywords

flattening filter
16
virtual source
12
source model
12
monte carlo
12
filter free
12
carlo dose
8
dose calculation
8
treatment planning
8
planning system
8
water phantom
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!