Structures and interaction energies of complexes valence isoelectronic to the important CO⋯H(2)O complex, namely SiO⋯H(2)O and CS⋯H(2)O, have been studied for the first time using high-level ab initio methods. Although CO, SiO, and CS are valence isoelectronic, the structures of their complexes with water differ significantly, owing partially to their widely varied dipole moments. The predicted dissociation energies D(0) are 1.8 (CO⋯H(2)O), 2.7 (CS⋯H(2)O), and 4.9 (SiO⋯H(2)O) kcal∕mol. The implications of these results have been examined in light of the dipole moments of the separate moieties and current concepts of hydrogen bonding. It is hoped that the present results will spark additional interest in these complexes and in the general non-covalent paradigms they represent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4730298 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!