A modified chemical-precipitation method is proposed to synthesize MgO nanopowders with high crystallinity at a low temperature of 400 degrees C using acetic acid as a modifier. The as-obtained intermediates and final products were investigated by Fourier-transformed infrared spectroscopy, thermogravimetric analysis, X-ray diffraction and transmission electron microscopy, respectively. The influence of acetic acid in the MgO preparation process was also investigated by a comparison of the samples without acetic acid, and the mechanism of acetic acid modification is also proposed. The carboxyl group of acetic acid could coordinate with Mg atom in a monodentate mode to form a new organic ligand intermediate Mg(OH)(OCOCH3), which facilitates the thermal decomposition of the intermediate at low temperature and enhances the crystallization of MgO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2012.5669 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!