We describe the fabrication of highly conductive and large-area three dimensional pillared graphene nanostructure (PGN) films from assembly of vertically aligned CNT pillars on flexible copper foils for applications in electric double layer capacitors (EDLC). The PGN films synthesized via a one-step chemical vapor deposition process on flexible copper foils exhibit high conductivity with sheet resistance as low as 1.6 ohms per square and possessing high mechanical flexibility. Raman spectroscopy indicates the presence of multi walled carbon nanotubes (MWCNT) and their morphology can be controlled by the growth conditions. It was discovered that nitric acid treatment can significantly increase the specific capacitance of the devices. EDLC devices based on PGN electrodes (surface area of 565 m2/g) demonstrate enhanced performance with specific capacitance value as high as 330 F/g extracted from the current density-voltage (CV) measurements and energy density value of 45.8 Wh/kg. The hybrid graphene-CNT nanostructures are attractive for applications including supercapacitors, fuel cells and batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2012.5198 | DOI Listing |
J Colloid Interface Sci
December 2024
Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China. Electronic address:
Macro-assembled silicon-based films can be taken into account as a possible anode material for the lithium ion batteries (LIBs) in portable electronics. However, most previously proposed preparation strategies are labor-intensive, intricate, and not appropriate for large-scale manufacturing. Herein, a multifunctional flexible silicon/carbon nanotube/reduced graphene oxide (Si/CNT/rGO) film was fabricated by one-step coating method based on the lyotropic nematic liquid crystals of graphene oxide (GO).
View Article and Find Full Text PDFNat Commun
October 2024
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore.
Magnesium (Mg) metal is a promising anode candidate for high-energy and cost-effective multivalent metal batteries, but suffers from severe surface passivation in conventional electrolytes, especially aqueous solutions. Here, we uncover that MgH, in addition to the well-known MgO and Mg(OH), can be formed during the passivation of Mg by water. The formation mechanism and spatial distribution of MgH, and its detrimental effect on interfacial dynamics and stability of Mg anode are revealed by comprehensive experimental and theoretical investigations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
School of Physics and Materials Science, Nanchang University, 330031, Nanchang, Jiangxi, P. R. China.
Acc Chem Res
September 2024
Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States.
Angew Chem Int Ed Engl
January 2025
State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!