Electron beam induced growth of silver nanoparticles.

Scanning

State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronics Science and Technology of China, Chengdu, China.

Published: September 2013

AI Article Synopsis

  • An electron beam method has been developed to produce large quantities of silver nanoparticles from silver chloride particles.
  • The process involves the use of scanning electron microscopy (SEM) and energy dispersive spectrum (EDS) to monitor growth and intermediates during nanoparticle formation.
  • The results indicate that the growth is primarily influenced by the electron beam's current density, leading to the decomposition of silver chloride into silver nanoparticles and chlorine under irradiation.

Article Abstract

An electron beam inducing method for sprouting large quantities of silver nanoparticles on the surface of silver chloride particles is reported. The electron beam driven process was characterized by time-dependent scanning electron microscope (SEM) and energy dispersive spectrum (EDS), allowing for observing several key intermediates in and characteristics of the growth process. Theoretical calculation coupled with experimental observation demonstrated that the growth of silver nanoparticles was mostly related to the current density of electron beam. Decomposition of the silver chloride on the surface of sample was under electron beam irradiation resulted in silver nanoparticles and chlorine. This phenomenon could be useful in developing a novel mechanism for preparation of nanostructures and proposing a reference to avoid image distortion during the characterization of silver compounds under SEM.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sca.21035DOI Listing

Publication Analysis

Top Keywords

electron beam
20
silver nanoparticles
16
growth silver
8
silver chloride
8
silver
7
electron
6
beam induced
4
induced growth
4
nanoparticles
4
nanoparticles electron
4

Similar Publications

We measure the high-intensity laser propagation throughout meter-scale, channel-guided laser-plasma accelerators by adjusting the length of the plasma channel on a shot-by-shot basis, showing high-quality guiding of 500 TW laser pulses over 30 cm in a hydrogen plasma of density n_{0}≈1×10^{17}  cm^{-3}. We observed transverse energy transport of higher-order modes in the first ≈12  cm of the plasma channel, followed by quasimatched propagation, and the gradual, dark-current-free depletion of laser energy to the wake. We quantify the laser-to-wake transfer efficiency limitations of currently available petawatt-class lasers and demonstrate via simulation how control over the laser mode can significantly improve beam parameters.

View Article and Find Full Text PDF

Charge transport in materials has an impact on a wide range of devices based on semiconductor, battery, or superconductor technology. Charge transport in sliding charge density waves (CDW) differs from all others in that the atomic lattice is directly involved in the transport process. To obtain an overall picture of the structural changes associated to the collective transport, the large coherent x-ray beam generated by an x-ray free-electron laser (XFEL) source was used.

View Article and Find Full Text PDF

X-ray diffraction (XRD) has evolved significantly since its inception, becoming a crucial tool for material structure characterization. Advancements in theory, experimental techniques, diffractometers and detection technology have led to the acquisition of highly accurate diffraction patterns, surpassing previous expectations. Extracting comprehensive information from these patterns necessitates different models due to the influence of both electron density and thermal motion on diffracted beam intensity.

View Article and Find Full Text PDF

Designing Hybrid Plasmonic Superlattices with Spatially Confined Responsive Heterostructural Units.

Nano Lett

January 2025

State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China.

Plasmonic superlattices enable the precise manipulation of electromagnetic fields at the nanoscale. However, the optical properties of static lattices are dictated by their geometry and cannot be reconfigured. Here, we present a surface-interface engineered plasmonic superlattice with confined polyelectrolyte-functionalized metal-organic framework (MOF) hybrid layers to tune plasmon resonance for ultrafast chemical sensing.

View Article and Find Full Text PDF

Unravelling nonclassical beam damage mechanisms in metal-organic frameworks by low-dose electron microscopy.

Nat Commun

January 2025

State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China.

Recent advances in direct electron detectors and low-dose imaging techniques have opened up captivating possibilities for real-space visualization of radiation-induced structural dynamics. This has significantly contributed to our understanding of electron-beam radiation damage in materials, serving as the foundation for modern electron microscopy. In light of these developments, the exploration of more precise and specific beam damage mechanisms, along with the development of associated descriptive models, has expanded the theoretical framework of radiation damage beyond classical mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!