Effects of ligand density and pore size on the adsorption of bovine IgG with DEAE ion-exchange resins.

J Sep Sci

State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.

Published: August 2012

AI Article Synopsis

  • Immunoglobulin G (IgG) is a key plasma protein used in various therapeutic and diagnostic applications, which can be purified via ion exchange chromatography.
  • The study uses bovine IgG to explore how different ligand densities and pore sizes of ion-exchange resins affect protein adsorption behaviors, employing Langmuir equations and pore diffusion models for data analysis.
  • Findings reveal that higher ligand densities and smaller pore sizes enhance adsorption capacities, suggesting an optimal combination of these factors is crucial for effective protein purification.

Article Abstract

Immunoglobulin G is an important plasma protein with many applications in therapeutics and diagnostics, which can be purified effectively by ion exchange chromatography. The ligand densities and pore properties of ion-exchange resins have significant effects on the separation behaviors of protein, however, the understandings are quite limited. In this work, with bovine immunoglobulin as the model IgG, the adsorption isotherms and adsorption kinetics were investigated systematically with series of diethylaminoethyl ion-exchange resins with different ligand densities and pore sizes. The Langmuir equation and pore diffusion model were used to fit the experimental data. The influences of ligand density and pore size on the saturated adsorption capacity, the dissociation constant and the effective diffusivity were discussed. The adsorption capacities increased with the increase of ligand density and the decrease of pore size, and an integrative parameter was proposed to describe the combined effects of ligand density and pore size. It was also found that the effective pore diffusion coefficient of the adsorption kinetics was influenced by pore sizes of resins, but was relatively independent on the ligand densities of resins. For a given protein, the ligand density and pore size should be optimized for improving the protein adsorption.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.201200282DOI Listing

Publication Analysis

Top Keywords

ligand density
20
pore size
20
density pore
16
ion-exchange resins
12
ligand densities
12
pore
10
effects ligand
8
densities pore
8
adsorption kinetics
8
pore sizes
8

Similar Publications

Mismatched electron and proton transport rates impede the manifestation of effective performance of the electrocatalytic oxygen evolution reaction (OER), thereby limiting its industrial applications. Inspired by the natural protein cluster in PS-II, different organic-inorganic hybrid electrocatalysts were synthesized via a hydrothermal method. -Toluidine (PT), benzoic acid (BA), and -aminobenzoic acid (PABA) were successfully intercalated into NiFe-LDH.

View Article and Find Full Text PDF

It is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission.

View Article and Find Full Text PDF

Lysoglycerophospholipid metabolism alterations associated with ambient fine particulate matter exposure: Insights into the pro-atherosclerotic effects.

Environ Pollut

January 2025

SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China. Electronic address:

The biological pathways connecting ambient fine particulate matter (PM)-induced initial adverse effects to the development of atherosclerotic cardiovascular diseases are not fully understood. We hypothesize that lysoglycerophospholipids (LysoGPLs) are pivotal mediators of atherosclerosis induced by exposure to PM. This study investigated the changes of LysoGPLs in response to PM exposure and the mediation role of LysoGPLs in the pro-atherosclerotic effects of PM exposure.

View Article and Find Full Text PDF

Spatial mapping of the HCC landscape identifies unique intratumoral perivascular-immune neighborhoods.

Hepatol Commun

November 2024

Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia.

Background: HCC develops in the context of chronic inflammation; however, the opposing roles the immune system plays in both the development and control of tumors are not fully understood. Mapping immune cell interactions across the distinct tissue regions could provide greater insight into the role individual immune populations have within tumors.

Methods: A 39-parameter imaging mass cytometry panel was optimized with markers targeting immune cells, stromal cells, endothelial cells, hepatocytes, and tumor cells.

View Article and Find Full Text PDF

A search for switchable molecules has afforded a family of cobalt complexes featuring derivatives of 2-aminophenol: 4,6-di--butyl aminophenol (HL) and 2-anilino-4,6-di--butyl aminophenol (HL). The heteroleptic cobalt complexes incorporate a Metpa ligand (tpa = tris(2-pyridylmethyl)amine; = 0-3), which involves the methylation of the 6-position of the pyridine ring). Eight members of this family have been synthesized and characterized: [Co(HL)(tpa)](BPh) (), [Co(HL)(Metpa)](BPh) (), [Co(L)(Metpa)](BPh) (), [Co(HL)(Metpa)](BPh) (), [Co(L)(Metpa)](BPh) (), [Co(HL)(tpa)] (BPh)(ClO) (), [Co(L)(tpa)](BPh)(ClO) () and [Co(HL)(Metpa)](BPh) (), where the aminophenol-derived ligands are monoanionic in either the open shell radical iminosemiquinonate (L) or the closed shell protonated aminophenolate (HL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!