Nucleotide-binding oligomerization domain 2 (Nod2) is a cytosolic sensor for muramyl dipeptide, a component of bacterial peptidoglycan. In this study, we have examined whether Nod2 mediates the immune response of macrophages against Yersinia enterocolitica. Bone-marrow-derived macrophages (BMDMs) were isolated from WT and Nod2-deficient mice and were infected with various strains of Y. enterocolitica. ELISA showed that the production of IL-6 and TNF-α in BMDMs infected with Y. enterocolitica was not affected by the Nod2 deficiency. iNOS mRNA expression was induced in both WT and Nod2-deficienct BMDMs in response to Y. enterocolitica, beginning 2 h after infection. Nitric oxide (NO) production by Y. enterocolitica did not differ between WT and Nod2-deficient BMDMs. Western blot analysis revealed that Y. enterocolitica induces activation of NF-κB, p38, and ERK MAPK through a Nod2-independent pathway. Neither LDH release by Y. enterocolitica nor the phagocytic activity of the macrophages was altered by Nod2 deficiency. An in vivo experiment showed that bacterial clearance ability and production of IL-6 and KC in serum were comparable in WT and Nod2-deficient mice infected with Y. enterocolitica. These findings suggest that Nod2 may not be critical for initiating the innate immune response of macrophages against Yersinia infection.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12275-012-1534-6DOI Listing

Publication Analysis

Top Keywords

macrophages yersinia
12
enterocolitica
9
nucleotide-binding oligomerization
8
oligomerization domain
8
domain nod2
8
innate immune
8
yersinia enterocolitica
8
immune response
8
response macrophages
8
nod2-deficient mice
8

Similar Publications

Plasticity of cell death pathways ensures GSDMD activation during Yersinia pseudotuberculosis infection.

Cell Rep

January 2025

Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore. Electronic address:

Macrophages express pattern recognition and cytokine receptors that mediate proinflammatory signal transduction pathways to combat microbial infection. To retaliate against such responses, pathogenic microorganisms have evolved multiple strategies to impede innate immune signaling. Recent studies demonstrated that YopJ suppression of TAK1 signaling during Yersinia pseudotuberculosis infection promotes the assembly of a RIPK1-dependent death-inducing complex that enables caspase-8 to directly cleave and activate gasdermin D (GSDMD).

View Article and Find Full Text PDF

Human genetic variation reveals FCRL3 is a lymphocyte receptor for .

bioRxiv

December 2024

Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA.

is the gram-negative bacterium responsible for plague, one of the deadliest and most feared diseases in human history. This bacterium is known to infect phagocytic cells, such as dendritic cells and macrophages, but interactions with non-phagocytic cells of the adaptive immune system are frequently overlooked despite the importance they likely hold for human infection. To discover human genetic determinants of infection, we utilized nearly a thousand genetically diverse lymphoblastoid cell lines in a cellular genome-wide association study method called Hi-HOST (High-throughput Human in-vitrO Susceptibility Testing).

View Article and Find Full Text PDF

Unlabelled: Multiple cell death and inflammatory signaling pathways converge on two critical factors: receptor interacting serine/threonine kinase 1 (RIPK1) and caspase-8. Careful regulation of these molecules is critical to control apoptosis, pyroptosis and inflammation. Here we discovered a pivotal role of Raver1 as an essential regulator of pre-mRNA splicing, expression, and functionality, and the subsequent caspase-8-dependent inflammatory cell death.

View Article and Find Full Text PDF

Gram-negative pathogens pose a significant threat due to their propensity for causing various infections, often coupled with formidable resistance to conventional antibiotic treatments. The development of antivirulence (AV) compounds emerges as a promising alternative strategy by disrupting virulence mechanisms rather than targeting bacterial viability. Aurodox has exhibited promising AV properties in previous studies by blocking the expression and function of the LEE-encoded type 3 secretion system (T3SS) in enterohaemorrhagic , an injectosome that translocates effector proteins directly into host target cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the colony-stimulating factor-1 receptor (MCSFR) in rainbow trout, identifying four gene variants, including two previously unrecognized, and explores their expression levels in various tissues.
  • The protein structure of MCSFRs includes five immunoglobulin-like domains and suggests a conserved function across species.
  • Following infection with Yersinia ruckeri, different MCSFR paralogues exhibit unique expression patterns, showing complex regulatory mechanisms influenced by various stimuli, enhancing the understanding of immune responses in fish.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!