Purpose: Multimodal cardiac imaging by CTA and quantitative PET enables acquisition of patient-specific coronary anatomy and absolute myocardial perfusion at rest and during stress. In the clinical setting, integration of this information is performed visually or using coronary arteries distribution models. We developed a new tool for CTA and quantitative PET integrated 3D visualization, exploiting XML and DICOM clinical standards.

Methods: The hybrid image tool (HIT) developed in the present study included four main modules: (1) volumetric registration for spatial matching of CTA and PET data sets, (2) an interface to PET quantitative analysis software, (3) a derived DICOM generator able to build DICOM data set from quantitative polar maps, and (4) a 3D visualization tool of integrated anatomical and quantitative flow information. The four modules incorporated in the HIT tool communicate by defined standard XML files: XML-transformation and XML MIST standards.

Results: The HIT tool implements a 3D representation of CTA showing real coronary anatomy fused to PET-derived quantitative myocardial blood flow distribution. The technique was validated on 16 data sets from EVINCI study population. The validation of the method confirmed the high matching between "original" and derived data sets as well as the accuracy of the registration procedure.

Conclusions: Three-dimensional integration of patient- specific coronary artery anatomy provided by CTA and quantitative myocardial blood flow obtained from PET imaging can improve cardiac disease assessment. The HIT tool introduced in this paper may represent a significant advancement in the clinical use of this multimodal approach.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11548-012-0777-3DOI Listing

Publication Analysis

Top Keywords

coronary anatomy
12
quantitative myocardial
12
cta quantitative
12
data sets
12
hit tool
12
hybrid image
8
visualization tool
8
quantitative
8
myocardial perfusion
8
quantitative pet
8

Similar Publications

Arrhythmias are a hallmark of myocardial infarction (MI) and increase patient mortality. How insult to the cardiac conduction system causes arrhythmias following MI is poorly understood. Here, we demonstrate conduction system restoration during neonatal mouse heart regeneration versus pathological remodeling at non-regenerative stages.

View Article and Find Full Text PDF

Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.

View Article and Find Full Text PDF

Objective: Post-resuscitation brain injury is a common sequela after cardiac arrest (CA). Increasing sirtuin1 (SIRT1) has been involved in neuroprotection in oxygen-glucose deprivation (OGD) neurons, and we investigated its mechanism in post-cardiopulmonary resuscitation (CPR) rat brain injury by mediating p65 deacetylation modification to mediate hippocampal neuronal ferroptosis.

Methods: Sprague-Dawley rat CA/CPR model was established and treated with Ad-SIRT1 and Ad-GFP adenovirus vectors, or Erastin.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio De Janeiro, Rio de Janeiro, Brazil.

Background: Alzheimer's disease (AD) is the leading cause of dementia in elderly humans worldwide. More than 40 million people currently suffer from AD, and this prevalence tends to increase considerably in the coming decades due to increased longevity. The unfolded protein response (UPR) is an adaptive signaling mechanism that aims to maintain cell viability under misfolded protein accumulation and endoplasmic reticulum stress.

View Article and Find Full Text PDF

Background: White matter hyperintensities (WMH) are commonly observed on MRI in Alzheimer's disease (AD), but the molecular pathways underlying their relationships with the ATN biomarkers remain unclear. The aim of this study was to identify genetic variants that may modify the relationship between WMH and the ATN biomarkers.

Method: This genome-wide interaction study (GWIS) included individuals with AD, MCI, and normal cognition from ADNI (n = 1012).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!