A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. | LitMetric

The heterogeneity of plaque formation, the vascular remodelling response to plaque formation, and the consequent phenotype of plaque instability attest to the extraordinarily complex pathobiology of plaque development and progression, culminating in different clinical coronary syndromes. Atherosclerotic plaques predominantly form in regions of low endothelial shear stress (ESS), whereas regions of moderate/physiological and high ESS are generally protected. Low ESS-induced compensatory expansive remodelling plays an important role in preserving lumen dimensions during plaque progression, but when the expansive remodelling becomes excessive promotes continued influx of lipids into the vessel wall, vulnerable plaque formation and potential precipitation of an acute coronary syndrome. Advanced plaques which start to encroach into the lumen experience high ESS at their most stenotic region, which appears to promote plaque destabilization. This review describes the role of ESS from early atherogenesis to early plaque formation, plaque progression to advanced high-risk stenotic or non-stenotic plaque, and plaque destabilization. The critical implication of the vascular remodelling response to plaque growth is also discussed. Current developments in technology to characterize local ESS and vascular remodelling in vivo may provide a rationale for innovative diagnostic and therapeutic strategies for coronary patients that aim to prevent clinical coronary syndromes.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvs217DOI Listing

Publication Analysis

Top Keywords

vascular remodelling
16
plaque formation
16
plaque
13
endothelial shear
8
shear stress
8
remodelling response
8
response plaque
8
clinical coronary
8
coronary syndromes
8
high ess
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!