When performing a manual control task, vehicle accelerations can cause involuntary limb motions, which can result in unintentional control inputs. This phenomenon is called biodynamic feedthrough (BDFT). In the past decades, many studies into BDFT have been performed, but its fundamentals are still only poorly understood. What has become clear, though, is that BDFT is a highly complex process, and its occurrence is influenced by many different factors. A particularly challenging topic in BDFT research is the role of the human operator, which is not only a very complex but also a highly adaptive system. In literature, two different ways of measuring and analyzing BDFT are reported. One considers the transfer of accelerations to involuntary forces applied to the control device (CD); the other considers the transfer of accelerations to involuntary CD deflections or positions. The goal of this paper is to describe an approach to unify these two methods. It will be shown how the results of the two methods relate and how this knowledge may aid in understanding BDFT better as a whole. The approach presented is based on the notion that BDFT dynamics can be described by the combination of two transfer dynamics: 1) the transfer dynamics from body accelerations to involuntary forces and 2) the transfer dynamics from forces to CD deflections. The approach was validated using experimental results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TSMCB.2012.2200972 | DOI Listing |
Exp Brain Res
December 2024
Department of Psychology, University of Otago, Dunedin, New Zealand.
Memory intrusion is a characteristic of posttraumatic stress disorder manifesting as involuntary flashbacks of negative events. Interference of memory reconsolidation using cognitive tasks has been employed as a noninvasive therapy to prevent subsequent intrusive retrieval. The present study aims to test whether physical activity, with its cognitive demands and unique physiological effects, may provide a novel practice to reduce later involuntary retrieval via the reconsolidation mechanism.
View Article and Find Full Text PDFJ Biomech
December 2024
Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States. Electronic address:
While levodopa is the most effective drug for symptom treatment of Parkinson's Disease (PD), its long-term use often leads to side effects such as uncontrolled involuntary movements known as levodopa-induced dyskinesia (LID). LID has been shown to increase postural sway, but the extent to which these hyperkinetic movements alter postural sway strategies has not been explored. We recruited 25 people with idiopathic PD, of which 13 exhibit clinical signs of LID, and 10 healthy older adults.
View Article and Find Full Text PDFActa Biomater
January 2025
Texas A&M University, Department of Biomedical Engineering, College Station, TX, United States; Texas A&M University, Department of Materials Science and Engineering, College Station, TX, United States. Electronic address:
Stress urinary incontinence (SUI) is the involuntary leakage of urine in response to increased intra-abdominal pressure during episodes of exertion. A common treatment method for SUI is sling implantation underneath the urethra to provide support. Most current sling procedures, however, cannot adjust urethral tension postoperatively.
View Article and Find Full Text PDFFront Psychol
October 2024
Neuropsychology and Cognition Group, Research Institute of Health Sciences, Department of Psychology, University of the Balearic Islands, Palma, Spain.
Numerous studies using oddball tasks have shown that unexpected sounds presented in a predictable or repeated sequence (deviant vs. standard sounds) capture attention and negatively impact ongoing behavioral performance. Here, we examine an aspect of this effect that has gone relatively unnoticed: the impact of deviant sounds is stronger for response repetitions than for response switches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!