Silicon nanowires (SiNWs) are promising building blocks for future electronic devices. In SiNW-based devices, reducing the contact resistance of SiNW-metal as much as possible is critically important. Here we report a simple fabrication approach for SiNW field effect transistors (FETs) with low contact resistances by employing a heavily doped carrier injection layer wrapped around SiNWs at the contact region. Both n- and p-type SiNW-FET devices with carrier injection layers were investigated, the contact resistances were one order smaller than those without carrier injection layers and only contribute less than 14.8% for n-type devices and 11.4% for p-type devices, respectively, to the total resistance. Such low contact resistance guarantees the device characteristics mainly from the channel region of SiNW-based devices.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/23/30/305701DOI Listing

Publication Analysis

Top Keywords

carrier injection
16
contact resistance
12
reducing contact
8
employing heavily
8
heavily doped
8
doped carrier
8
injection layer
8
sinw-based devices
8
low contact
8
contact resistances
8

Similar Publications

: The proton-coupled amino acid transporter (PAT1) is an intestinal absorptive solute carrier responsible for the oral bioavailability of some GABA-mimetic drug substances such as vigabatrin and gaboxadol. In the present work, we investigate if non-steroidal anti-inflammatory drug substances (NSAIDs) interact with substrate transport via human (h)PAT1. : The transport of substrates via hPAT1 was investigated in Caco-2 cells using radiolabeled substrate uptake and in oocytes injected with , measuring induced currents using the two-electrode voltage clamp technique.

View Article and Find Full Text PDF

Poly(amic acid)-Polyimide Copolymer Interfacial Layers for Self-Powered CHNHPbI Photovoltaic Photodiodes.

Polymers (Basel)

January 2025

Department of Electrical and Biological Physics, Kwangwoon University, Wolgye-Dong, Seoul 01897, Republic of Korea.

Hybrid organohalide perovskites have received considerable attention due to their exceptional photovoltaic (PV) conversion efficiencies in optoelectronic devices. In this study, we report the development of a highly sensitive, self-powered perovskite-based photovoltaic photodiode (PVPD) fabricated by incorporating a poly(amic acid)-polyimide (PAA-PI) copolymer as an interfacial layer between a methylammonium lead iodide (CHNHPbI, MAPbI) perovskite light-absorbing layer and a poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT: PSS) hole injection layer. The PAA-PI interfacial layer effectively suppresses carrier recombination at the interfaces, resulting in a high power conversion efficiency () of 11.

View Article and Find Full Text PDF

Hemoglobin-based oxygen carriers have been developed to compensate the needs of blood for transfusions. Most of them were based on intracellular hemoglobin extracted from bovine or human blood, but unfortunately, this type of hemoglobin did not pass through the last steps of clinical trials. In this context, HEMARINA discovered a natural extracellular hemoglobin, possessing several advantages avoiding intracellular hemoglobin-related side effects.

View Article and Find Full Text PDF

Performance Study of Ultraviolet AlGaN/GaN Light-Emitting Diodes Based on Superlattice Tunneling Junction.

Micromachines (Basel)

December 2024

State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, China.

In this study, we aim to enhance the internal quantum efficiency (IQE) of AlGaN-based ultraviolet (UV) light-emitting diodes (LEDs) by using the short-period AlGaN/GaN superlattice as a tunnel junction (TJ) to construct polarized structures. We analyze in detail the effect of this polarized TJ on the carrier injection efficiency and investigate the increase in hole and electron density caused by the formation of 2D hole gas (2DHG) and 2D electron gas (2DEG) in the superlattice structure. In addition, a dielectric layer is introduced to evaluate the effect of stress changes on the tunneling probability and current spread in TJ.

View Article and Find Full Text PDF

The failure of different chips under working conditions is influenced by various stress states such as different voltages, temperatures, stress durations, and stress variations. Therefore, the failure time has a great degree of dispersion, and similar chips may exhibit different failure mechanisms due to variations in their working environments. This paper proposes three system-on-chip reliability failure prediction unit circuits: the time-dependent dielectric breakdown prediction circuit, the negative bias temperature instability prediction circuit, and the hot carrier injection prediction circuit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!