A frequently used fermentation manner in lactic acid (LA) production, batch fermentation by pure cultures, has a limited practicability: low volumetric productivity and high energy consumption. In this study, continuous LA fermentation was performed in a completely stirred tank reactor at 12h HRT, inoculated with anaerobic digester sludge. Glucose (25 g COD/L) was used as a feedstock and temperature was increased from 35 to 60°C. LA production significantly increased from 50°C, which was negligible up to 45°C, with obvious bacterial community change. At 50 and 55°C, LA production was maximized, reaching 23 g COD/L, corresponding to 92% LA conversion efficiency. Pyrosequencing analysis showed that microbial diversity was simplified at 50-60°C, and the sequences closely related with Bacillus coagulans became predominant, followed by Lactobacillus fermentum. An LA-producing upflow ananerobic sludge blanket reactor was successfully developed, which enhanced the productivity up to 4.8 gLA/L/h by shortening HRT to 4h.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2012.05.027DOI Listing

Publication Analysis

Top Keywords

lactic acid
8
acid production
8
bacterial community
8
temperature continuous
4
continuous fermentative
4
fermentative lactic
4
production
4
production bacterial
4
community development
4
development la-producing
4

Similar Publications

is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.

View Article and Find Full Text PDF

Periodontitis, a widespread inflammatory disease, is the major cause of tooth loss in adults. While mechanical periodontal therapy benefits the periodontal disease treatment, adjunctive periodontal therapy is also necessary. Topically applied anti-inflammatory agents have gained considerable attention in periodontitis therapy.

View Article and Find Full Text PDF

Lactic acid bacteria (LAB), known for their health benefits, exhibit antimicrobial and antibiofilm properties. This study investigated the cell-free supernatant (CFS) of spp., particularly KR3, against the common foodborne pathogens , and spp.

View Article and Find Full Text PDF

This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers.

View Article and Find Full Text PDF

Background: Gastrointestinal diseases in weaned piglets are a frequent cause of high morbidity and mortality in domestic pigs. The use of antibiotics is problematic due to increasing antibiotic resistance in bacterial populations, for which reason the use of suitable probiotics is highly recommended to maintain animal health and welfare.

Results: In this study, 57 strains of biologically safe lactic acid bacteria (LAB) and bifidobacteria originating from the gastrointestinal tract (GIT) of pigs were identified and characterized in terms of their probiotic properties for potential use in weaned piglets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!