Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pendrin is a transmembrane chloride/anion exchanger highly expressed in thyroid, kidney, and inner ear. Endoplasmic reticulum (ER)-retention of improperly folded Pendrin mutants is considered as the major cause for Pendred syndrome. However, the folding and degradation mechanisms of Pendrin are poorly understood. Here, we report that treatment of 17-AAG, an Hsp90 inhibitor, facilitates the folding of Pendrin through heat shock transcription factor 1 (Hsf1)-dependent induction of molecular chaperones. Furthermore, we demonstrate that Rma1, an E3 ubiquitin ligase localized in the ER membrane, is involved in Pendrin degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2012.06.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!