Parkinson's disease (PD) is characterized by widespread alpha-synuclein pathology and neuronal loss, primarily of the nigrostriatal dopaminergic neurons. Inflammation has been implicated in PD, and alpha-synuclein can initiate microglial activation; however, the kinetics and distribution of inflammatory responses to alpha-synuclein overexpression in vivo are not well understood. We have examined the regional and temporal pattern of microglial activation and pro-inflammatory cytokine production in mice over-expressing wild-type human alpha-synuclein driven by the Thy1-promoter (Thy1-aSyn mice). An increased number of activated microglia, and increased levels of TNF-α mRNA and protein were first detected in the striatum (1 month of age) and later in the substantia nigra (5-6 months), but not the cerebral cortex or cerebellum; in contrast, IL-1β and TGF-β remained unchanged in the striatum and substantia nigra at all ages examined. Microglial activation persisted up to 14 months of age in these regions and only minimal increases were observed in other regions at this later age. Increased concentrations of serum TNF-α were observed at 5-6 months, but not at 1 month of age. The expression of toll-like receptors (TLRs) 1, TLR 4 and TLR 8, which are possible mediators of microglial activation, was increased at 5-6 months in the substantia nigra but not in the cerebral cortex, and TLR 2 was increased in the substantia nigra at 14 months of age. With the exception of a slight increase in the striatum of 14 month old Thy1-aSyn mice, MHCII staining was not detected in the regions and ages examined. Similarly, peripheral CD4 and CD8-postive T cells were increased in the blood but only at 22 months of age, suggesting later involvement of the adaptive immune response. These data indicate that, despite the presence of high levels of alpha-synuclein in other brain regions, alpha-synuclein overexpression caused a selective early inflammatory response in regions containing the axon terminals and cell bodies of the nigrostriatal pathway. Our results suggest that specific factors, possibly involving a regionally and temporally selective increase in TLRs, mediate alpha-synuclein-induced inflammatory responses in the SN, and may play a role in the selective vulnerability of nigrostriatal dopaminergic neurons in PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443323PMC
http://dx.doi.org/10.1016/j.expneurol.2012.06.025DOI Listing

Publication Analysis

Top Keywords

microglial activation
20
substantia nigra
16
5-6 months
12
months age
12
mice over-expressing
8
nigrostriatal dopaminergic
8
dopaminergic neurons
8
inflammatory responses
8
alpha-synuclein overexpression
8
thy1-asyn mice
8

Similar Publications

Microglial NLRP3-gasdermin D activation impairs blood-brain barrier integrity through interleukin-1β-independent neutrophil chemotaxis upon peripheral inflammation in mice.

Nat Commun

January 2025

Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.

Blood-brain barrier (BBB) disintegration is a key contributor to neuroinflammation; however, the biological processes governing BBB permeability under physiological conditions remain unclear. Here, we investigate the role of NLRP3 inflammasome in BBB disruption following peripheral inflammatory challenges. Repeated intraperitoneal lipopolysaccharide administration causes NLRP3-dependent BBB permeabilization and myeloid cell infiltration into the brain.

View Article and Find Full Text PDF

Inhibition of Kv1.1 channels ameliorates Cu(II)-induced microglial activation and cognitive impairment in mice.

Neurochem Int

January 2025

Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China. Electronic address:

Microglia-mediated neuroinflammation plays a critical role in neuronal damage in neurodegenerative disorders such as Alzheimer's disease. Evidence shows that voltage-gated potassium (Kv) channels regulate microglial activation. We previously reported that copper dyshomeostasis causes neuronal injury via activating microglia.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Antiamyloid antibody treatments modestly slow disease progression in mild dementia due to AD. Emerging evidence shows that homeostatic dysregulation of the brain immune system, especially that orchestrated by microglia, plays an important role in disease onset and progression.

View Article and Find Full Text PDF

Autophagy in microglia is essential for the clearance of amyloid-beta (Aβ) and amyloid plaques in Alzheimer's disease. However, reports regarding the levels of autophagy in microglia have been inconsistent; some studies indicate an early enhancement followed by a subsequent reduction, while others describe a persistently weakened state. Notably, there is a lack of systematic studies documenting the temporal changes in microglial autophagy.

View Article and Find Full Text PDF

Long-Term Exposure to Tire-Derived 6-PPD Quinone Causes Neurotoxicity and Neuroinflammation via Inhibition of HTR2A in C57BL/6 Mice.

Environ Sci Technol

January 2025

School of Basic Medical Sciences, Shandong Second Medical University, 7166 Baotong West Street, Weicheng District, Weifang, Shandong 261053, China.

-(1,3-dimethylbutyl)-'-phenyl--phenylenediamine quinone (6-PPDQ), a novel contaminant derived from tire wear, has raised concerns due to its potential neurotoxicity, yet its long-term effects on mammalian neurological health remain poorly understood. This study investigates the neurotoxic and neuroinflammatory impacts of prolonged 6-PPDQ exposure using male C57BL/6 mice. Behavioral assessments revealed significant cognitive deficits, while biochemical analyses demonstrated increased levels of reactive oxygen species, apoptosis, and blood-brain barrier (BBB) disruption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!