Pituitary adenylate cyclase activating polypeptide (PACAP) is known for its potent neuroprotective effects, including the retinoprotective actions in several types of retinal injuries. We have shown earlier that PACAP treatment causes activation of protective pathways and inhibition of pro-apoptotic signaling in excitotoxic retinal lesions. The aim of the present study was to gain insight into the in vivo protective mechanism of PACAP in retinal hypoperfusion injury induced by bilateral common carotid artery occlusion (BCCAO). Rats underwent BCCAO and received intravitreal PACAP (PACAP38) treatment. We investigated the activation level of the protective Akt pathway as well as the different mitogen activated protein kinases (MAPKs) by Western blot analysis and the expression of cytokines using a cytokine array kit. We found that PACAP treatment alone did not influence the phosphorylation of Akt or the MAPKs, but decreased the hypoperfusion-induced activation of both p38MAPK and JNK and increased the activation of the protective Akt and ERK1/2 in hypoperfused retinas. The cytokine profile was dramatically changed after BCCAO, with most cytokines and chemokines showing an increase, which was attenuated by PACAP (such as CINC, CNTF, fractalkine, sICAM, IL-1, LIX, Selectin, MIP-1, RANTES and TIMP-1). In addition, PACAP increased the expression of VEGF and thymus chemokine. The present results provide further insight into the neuroprotective mechanism induced by PACAP in ischemic retinal injuries, showing that PACAP ameliorates hypoperfusion injury involving Akt, MAPK pathways and anti-inflammatory actions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2012.06.044DOI Listing

Publication Analysis

Top Keywords

pacap
10
retinal hypoperfusion
8
retinal injuries
8
pacap treatment
8
activation protective
8
hypoperfusion injury
8
protective akt
8
akt
5
retinal
5
pacap map
4

Similar Publications

Introduction: Migraine is a disabling neurological disorder with a complex neurobiology. It appears as a cyclic disorder of sensory processing, affecting multiple systems beyond nociception. Overlapping mechanisms, including dysfunctional processing of sensory input from brain structures are involved in the generation of attacks.

View Article and Find Full Text PDF

In 2024, therapeutic and diagnostic advancements are shaping the field of neurology. Three new drugs show promise for treating myasthenia gravis and chronic inflammatory demyelinating polyneuropathy. A new classification for Parkinson's disease has been proposed, while a neuroprosthesis is improving gait in advanced stages.

View Article and Find Full Text PDF

Background And Purpose: Pituitary adenylate cyclase activating polypeptide (PACAP) is a human migraine trigger that is being targeted for migraine. The δ-opioid receptor (δ-receptor) is a novel target for the treatment of migraine, but its mechanism remains unclear. The goals of this study were to develop a mouse PACAP-headache model using clinically significant doses of PACAP; determine the effects of δ-receptor activation in this model; and investigate the co-expression of δ-receptors, PACAP and PACAP-PAC1 receptor.

View Article and Find Full Text PDF

PAC1 Agonist Maxadilan Reduces Atherosclerotic Lesions in Hypercholesterolemic ApoE-Deficient Mice.

Int J Mol Sci

December 2024

Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037 Marburg, Germany.

A possible involvement of immune- and vasoregulatory PACAP signaling at the PAC1 receptor in atherogenesis and plaque-associated vascular inflammation has been suggested. Therefore, we tested the PAC1 receptor agonist Maxadilan and the PAC1 selective antagonist M65 on plaque development and lumen stenosis in the ApoE atherosclerosis model for possible effects on atherogenesis. Adult male ApoE mice were fed a cholesterol-enriched diet (CED) or standard chow (SC) treated with Maxadilan, M65 or Sham.

View Article and Find Full Text PDF

Purpose: This study aims to elucidate the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in Hunner-type Interstitial Cystitis (HIC) and evaluate its potential as a therapeutic target.

Methods: Bladder tissue samples were obtained from HIC patients and normal bladder tissue from bladder cancer patients. PACAP expression was assessed through immunohistochemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!