Certain strains of microalgae are long known to produce hydrogen under anaerobic conditions. In Chlamydomonas reinhardtii the oxygen-sensitive hydrogenase enzyme recombines electrons from the chloroplast electron transport chain with protons to form molecular hydrogen directly inside the chloroplast. A sustained hydrogen production can be obtained under low sulfur conditions in C. reinhardtii, reducing the net oxygen evolution by reducing the photosystem II activity and thereby overcoming the inhibition of the hydrogenases. The development of specially adapted hydrogen production strains led to higher yields and optimized biological process preconditions. So far sustainable hydrogen production required a complete exchange of the growth medium to establish sulfur-deprived conditions after biomass growth. In this work we demonstrate the transition from the biomass growth phase to the hydrogen production phase in a single batch culture only by exact dosage of sulfur. This eliminates the elaborate and energy intensive solid-liquid separation step and establishes a process strategy to proceed further versus large scale production. This strategy has been applied to determine light dependent biomass growth and hydrogen production kinetics to assess the potential of H₂ production with C. reinhardtii as a basis for scale up and further process optimization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2012.06.002 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of Texas at Austin, Austin 78712, Texas, United States.
A novel mechanism for -heteroaryl C-H functionalization via dearomative addition-hydrogen autotransfer is described. Upon exposure to the catalyst derived from RuHCl(CO)(PPh) and Xantphos, dienes - suffer hydroruthenation to form allylruthenium nucleophiles that engage in -heteroaryl addition-β-hydride elimination to furnish branched products of C-C coupling - and -. Oxidative cleavage of isoprene adducts , , , and followed by ruthenium-catalyzed dynamic kinetic asymmetric ketone reduction provides enantiomerically enriched -heteroarylethyl alcohols - and, therefrom, -heteroarylethyl amines -.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
Based on molecular networking-guided isolation, 15 previously undescribed hydrogenated phenanthrene glycosides, including eight hexahydro-phenanthrenone glycosides, four tetrahydro-phenanthrenone glycosides, one dihydro-phenanthrenol glycoside, two dimers, and two known dihydrophenanthrene glycosides, were isolated from W.T.Wang, a popular regional edible vegetable at the northwest region of Vietnam.
View Article and Find Full Text PDFChemistry
January 2025
University of Missouri, Chemistry, 601 S. College Ave, 65211, Columbia, UNITED STATES OF AMERICA.
CO2-based hydroesterification is an attractive route to produce value added ester compounds, which could replace CO-based hydroesterification processes if sufficient catalytic technologies are developed. One path to CO2-based hydroesterification is through an organoformate intermediate, which is then used in olefin hydroesterification to generate the desirable esters. This route creates a net CO2-based hydroesterification process using tandem catalytic systems for CO2 hydrogenation to organoformate paired with formate-olefin hydroesterification.
View Article and Find Full Text PDFJ Mol Model
January 2025
School of Chemistry & Chemical Engineering, Linyi University, Linyi, 276000, China.
Context: In this work, a comparative study on the catalytic conversion of 5-hydroxymethyl furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) on precious Pd(111) and nonprecious Cu(111) was systematically performed. On the basis of the calculated activation energy (E) and reaction energy (E), the optimal energy path for the hydrogenation of HMF (F-CHO) into BHMF (F-CHOH) on Pd(111) is as follows: F-CHO + 2H → F-CHOH + H → F-CHOH; the minimum reaction path on Cu(111) is F-CHO + 2H → F-CHO + H → F-CHOH. On Cu(111), the formation of F-CHOH from F-CHO hydrogenation is the rate-determining step because it has the highest reaction energy barrier and the smallest rate constant.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Hydrogen and Electrochemistry, Idaho National Laboratory, Idaho Falls, ID 83415, United States.
Reducing the energy and carbon intensity of the conventional chemical processing industry can be achieved by electrochemically transforming natural gases into higher-value chemicals with higher efficiency and near-zero emissions. In this work, the direct conversion of methane to aromatics and electricity has been achieved in a protonic ceramic electrocatalytic membrane reactor through the integration of a proton-conducting membrane assembly and a trimetallic Pt-Cu/Mo/ZSM-5 catalyst for the nonoxidative methane dehydro-aromatization reaction. In this integrated system, a remarkable 15.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!