In the development of ischemia/reperfusion (I/R) injury, the role of the myosin light chain (MLC) phosphorylation has been given increased consideration. ML-7, a MLC kinase inhibitor, has been shown to protect cardiac function from I/R, however the exact mechanism remains unclear. Isolated rat hearts were perfused under aerobic conditions (controls) or subjected to I/R in the presence or absence of ML-7. Continuous administration of ML-7 (5 μM) from 10 min before onset of ischemia to the first 10 min of reperfusion resulted in significant recovery of heart contractility. Analysis of gels from two-dimensional electrophoresis revealed eight proteins with decreased levels in I/R hearts. Six proteins are involved in energy metabolism:ATP synthase beta subunit, cytochrome b-c1 complex subunit 1, 24-kDa mitochondrial NADH dehydrogenase, NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, cytochrome c oxidase subunit, and succinyl-CoA ligase subunit. The other two proteins with decreased levels in I/R hearts are: peroxiredoxin-2 and tubulin. Administration of ML-7 increased level of succinyl-CoA ligase, key enzyme involved in the citric acid cycle. The increased level of succinyl-CoA ligase in I/R hearts perfused with ML-7 suggests that the cardioprotective effect of ML-7, at least partially, also may involve increase of energy production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2012.06.016DOI Listing

Publication Analysis

Top Keywords

i/r hearts
12
succinyl-coa ligase
12
myosin light
8
light chain
8
kinase inhibitor
8
hearts perfused
8
administration ml-7
8
proteins decreased
8
decreased levels
8
levels i/r
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!