Chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia (ALL) are associated with fusion of the BCR and ABL1 genes by chromosome translocation. The chimerical BCR-ABL1 gene encodes different fusion proteins that vary in size, depending on the breakpoint in the BCR region. Different types of fusion genes in CML and Ph(+) ALL are thought to be related to the clinical course and outcome of each patient. Currently, the genotypes are determined by PCR, followed by gel electrophoresis or DNA sequencing (among other methodologies). Our major aim was to develop a diagnostic method for CML genotyping by means of an integrated process of DNA microarray. Here, we describe a method of integrated multiplex reverse transcription, asymmetric PCR, and hybridization, all in the same reaction mixture in a chamber assembled on the surface of capture oligonucleotide probes immobilized on a glass slide. The integrated system successfully identified the four predominant types of chimerical BCR-ABL1 RNA (b3a2, b2a2, e1a2, and c3a2), which together account for 98% of CML cases. The integrated multiplex system also had a high sensitivity of detection (as little as 200 molecules of target RNA molecules). The integrated process saves time and effort, and it also the advantage of minimizing the steps needed for automated detection of different types of chimerical CML RNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmoldx.2012.04.003 | DOI Listing |
Bioorg Chem
December 2024
Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, India. Electronic address:
Tyrosine kinase inhibitors (TKIs) represent a pivotal class of targeted therapies in oncology, with multiple generations developed to address diverse molecular targets. Imatinib is the first TKI developed to target the BCR-ABL1 chimeric protein, which is the key driver oncogene implicated in Philadelphia chromosome-positive chronic myeloid leukemia (CML). Several second-generation tyrosine kinase inhibitors (2GTKIs), such as nilotinib, dasatinib, bosutinib, and radotinib (RTB), followed the groundbreaking introduction of imatinib.
View Article and Find Full Text PDFBlood Adv
November 2024
The University of Alabama at Birmingham, Birmingham, Alabama, United States.
Cancer Genet
November 2024
Laboratory of Biomedical & Translational Research, Faculty of Medicine, Pharmacy and Dentistry of Fez, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco; Medical Genetics & Oncogenetics Laboratory, Hassan II University Hospital, 30000, Fez, Morocco.
Tyrosine Kinase Inhibitors (TKI), such as Imatinib, are known for their effectiveness in achieving complete remission from Chronic Myeloid Leukemia (CML), a malignancy caused by a reciprocal translocation between the terminal fragments of the long arms of chromosomes 9 and 22 that leads to the famous chimeric BCR::ABL1 gene. Mutations in this fusion gene may induce resistance to TKI treatment, which requires prescribing a second-, or third-generation TKI medication. We report here a case of a Moroccan CML patient with secondary resistance to the frontline TKI treatment (Imatinib), in which, BCR::ABL1 cDNA sequencing reveals the novel mutation p.
View Article and Find Full Text PDFBCR::ABL1 tyrosine kinase inhibitors (TKIs) have turned chronic myeloid leukemia (CML) from a lethal condition into a chronic ailment. With optimal management, the survival of CML patients diagnosed in the chronic phase is approaching that of age-matched controls. However, only one-third of patients can discontinue TKIs and enter a state of functional cure termed treatment-free remission (TFR), while the remainder require life-long TKI therapy to avoid the recurrence of active leukemia.
View Article and Find Full Text PDFBlood
September 2024
Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.
B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) is the most common childhood malignancy and is driven by multiple genetic alterations that cause maturation arrest and accumulation of abnormal progenitor B cells. Current treatment protocols with chemotherapy have led to favorable outcomes but are associated with significant toxicity and risk of side effects, highlighting the necessity for highly effective, less toxic, targeted drugs, even in subtypes with a favorable outcome. Here, we used multimodal single-cell sequencing to delineate the transcriptional, epigenetic, and immunophenotypic characteristics of 23 childhood BCP-ALLs belonging to the BCR::ABL1+, ETV6::RUNX1+, high hyperdiploid, and recently discovered DUX4-rearranged (DUX4-r) subtypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!