Purpose: This study evaluated the effects of cyanoacrylate-combined calcium phosphate (CCP) as a candidate for a barrier membrane substitute in guided bone regeneration and the space maintenance capability of CCP placed in a dehiscence defect model.
Materials And Methods: Six standardized dehiscence defects (5 × 3 mm, height × width) around dental implants were created on unilateral edentulous ridges in 5 dogs, where each defect was treated with sham surgery, biphasic calcium phosphate (BCP), CCP, barrier membrane (MEM), BCP + MEM, and CCP + MEM. The animals were sacrificed after an 8-week healing interval for histologic and histometric analyses.
Results: The BCP and CCP sites showed increased bone formation compared with the control sites, although incomplete defect resolution occurred; bone regeneration heights (area) averaged 3.52 ± 0.69 mm (4.94 ± 2.59 mm(2)), 3.51 ± 0.16 mm (4.10 ± 1.99 mm(2)), and 1.53 ± 0.42 mm (1.01 ± 0.74 mm(2)) for the BCP, CCP, and control sites, respectively. All the MEM sites showed more bone formation compared with the sites that received the same biomaterials without a MEM, and the BCP + MEM and CCP + MEM sites showed extensive bone formation within the defect and on top of the implant; the bone regeneration heights (area) averaged 3.96 ± 2.86 mm (12.46 ± 11.61 mm(2)), 5.45 ± 0.25 mm (11.63 ± 1.97 mm(2)), and 2.62 ± 0.27 mm (3.43 ± 0.98 mm(2)) for the BCP + MEM, CCP + MEM, and MEM sites, respectively.
Conclusions: CCP can be a good scaffold for supporting an MEM as opposed to acting as a substitute for the MEM in guided bone regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.joms.2012.04.044 | DOI Listing |
Adv Healthc Mater
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.
Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).
View Article and Find Full Text PDFJ Tissue Eng
January 2025
Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
Bone marrow stimulation treatment by bone marrow stromal cells (BMSCs) released from the bone medullary cavity and differentiated into cartilage via microfracture surgery is a frequently employed technique for treating articular cartilage injuries, yet the treatment presents a main drawback of poor cartilage regeneration in the elderly. Prior research indicated that aging could decrease the stemness capacity of BMSCs, thus we made a hypothesis that increasing old BMSCs (OBMSCs) stemness might improve the results of microfracture in the elderly. First, we investigated the correlation between microfracture outcomes and BMSCs stemness using clinical data and animal experiments.
View Article and Find Full Text PDFClin Case Rep
January 2025
Department of Periodontology, Kalinga Institute of Dental Sciences Kalinga Institute of Industrial Technology (Deemed to Be University) Bhubaneswar Odisha India.
This case report aimed to illustrate the management of single tooth replacement in the esthetic region using immediate implant placement, highlighting the importance of interdisciplinary treatment planning and adherence to esthetic principles. A 37-year-old female presented with a fractured upper front tooth, necessitating immediate attention to restore esthetic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!