Metal gill binding and toxicity can be modeled using the concentration addition model, in which the toxic unit (TU) concept is used to determine if constituent metals are acting in a strictly additive, less than, or greater than additive fashion. To test this hypothesis, rainbow trout (Oncorhynchus mykiss) were exposed to a matrix of Pb plus Cd mixtures (nominal concentrations=0.75, 1.5, 2.25, 3.0 μmol L(-1)), in the presence or absence of mainly terrigenous (allochthonous; 10 mg CL(-1)) natural organic matter (NOM), and metal-gill binding, and toxicity was quantified. Based on its greater affinity for metal-gill binding sites, Cd-gill binding was expected to exceed Pb-gill binding during metal mixture exposure, but this only occurred at the lowest metal concentrations (0.75 μmol L(-1)); at higher concentrations Pb-gill binding was greater than Cd-gill binding. These unexpected observations were because Pb and Cd likely bind to different populations of high affinity, low capacity binding sites on the gill, which was borne out in subsequent attempts to mathematically model metal-gill interactions during metal-mixture exposure. The presence of an additional low affinity, high capacity population of Pb-gill binding sites also contributed to higher Pb-gill accumulation. Metal-gill interactions were complicated by NOM, which exacerbated toxicity during Cd-only exposure despite lowering Cd-gill accumulation. NOM also promoted Cd-gill binding in the presence of low-moderate concentrations of Pb (0.75 and 1.50 μmol L(-1)). We suggest that direct interactions of Cd-NOM complexes with the gill, and increases in Cd bioavailability due to Pb outcompeting Cd for NOM-metal binding sites due to its greater affinity for such ligands, accounted for greater Cd-gill binding and toxicity. We conclude that interactions of Pb and Cd with the gill cannot be predicted using the concentration addition model, and that NOM is not universally protective against metal-gill binding and toxicity when fish are exposed to metal mixtures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2012.05.020DOI Listing

Publication Analysis

Top Keywords

binding toxicity
16
binding sites
16
cd-gill binding
16
binding
13
μmol l-1
12
metal-gill binding
12
pb-gill binding
12
presence absence
8
natural organic
8
organic matter
8

Similar Publications

Chrysoeriol: a natural RANKL inhibitor targeting osteoclastogenesis and ROS regulation for osteoporosis therapy.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.

Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.

View Article and Find Full Text PDF

Although the antiallergic properties of compounds such as CAPE, Melatonin, Curcumin, and Vitamin C have been poorly discussed by experimental studies, the antiallergic properties of these famous molecules have never been discussed with calculations. The histamine-1 receptor (H1R) belongs to the family of rhodopsin-like G-protein-coupled receptors expressed in cells that mediate allergies and other pathophysiological diseases. In this study, pharmacological activities of FDA-approved second generation H1 antihistamines (Levocetirizine, desloratadine and fexofenadine) and molecules such as CAPE, Melatonin, Curcumin, Vitamin C, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) profiles, density functional theory (DFT), molecular docking, biological targets and activities were compared by calculating.

View Article and Find Full Text PDF

Insights into Toxicological Mechanisms of Per-/polyfluoroalkyl Substances by Using Omics-centered Approaches.

Environ Pollut

January 2025

College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China. Electronic address:

The extensive presence of per-/polyfluoroalkyl substances (PFASs) in the environment and their adverse effects on organisms have garnered increasing concern. With the shift of industrial development from legacy to emerging PFASs, expanding the understanding of molecular responses to legacy and emerging PFASs is essential to accurately assess their risks to organisms. Compared with traditional toxicological approaches, omics technologies including transcriptomics, proteomics, metabolomics/lipidomics, and microbiomics allow comprehensive analysis of the molecular changes that occur in organisms after PFAS exposure.

View Article and Find Full Text PDF

Tetrahydroberberrubine improves hyperlipidemia by activating the AMPK/SREBP2/PCSK9/LDL receptor signaling pathway.

Eur J Pharmacol

January 2025

State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China. Electronic address:

Hyperlipidemia is a major risk factor for hypertension, coronary heart disease, diabetes and stroke, triggering an intensified research efforts into its prevention and treatment. Tetrahydroberberrubine (THBru) is a derivative of berberine (BBR) that has been shown to have higher bioavailability and lower toxicity compared to its parent compound. However, its impact on hyperlipidemia has not been fully explored.

View Article and Find Full Text PDF

Polystyrene microplastics exhibit toxic effects on the widespread coral symbiotic Cladocopium goreaui.

Environ Res

January 2025

Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China.

Within the coral reef habitat, members of the Symbiodiniaceae family stand as pivotal symbionts for reef-building corals. However, the physiological response of Symbiodiniaceae on microplastics are still poorly understood. Research conducted in this investigation assessed the harmful impact of polystyrene microparticles (PS-MPs) on Cladocopium goreaui, a Symbiodiniaceae species with a broad distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!