The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCF(FBW7) complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477590PMC
http://dx.doi.org/10.1016/j.molcel.2012.05.044DOI Listing

Publication Analysis

Top Keywords

ring ligase
8
rbx1 rbx2
8
structure glomulin-rbx1-cul1
4
glomulin-rbx1-cul1 complex
4
complex inhibition
4
ring
4
inhibition ring
4
ligase masking
4
masking e2-binding
4
e2-binding surface
4

Similar Publications

WBP1L is a broadly expressed transmembrane adaptor protein involved in regulating hematopoietic stem cell function and T cell development. It interacts with NEDD4-family E3 ubiquitin ligases and regulates important chemokine receptor CXCR4. Using tandem affinity purification coupled with mass spectrometry, we identified novel WBP1L interactions with the IFNγ receptor and the Cullin-RING ubiquitin ligases CRL1.

View Article and Find Full Text PDF

Modulation of Lymphotoxin β Surface Expression by Kaposi's Sarcoma-Associated Herpesvirus K3 Through Glycosylation Interference.

J Med Virol

January 2025

Department of Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

Kaposi's sarcoma-associated herpesvirus (KSHV) employs diverse mechanisms to subvert host immune responses, contributing to its infection and pathogenicity. As an immune evasion strategy, KSHV encodes the Membrane-Associated RING-CH (MARCH)-family E3 ligases, K3, and K5, which target and remove several immune regulators from the cell surface. In this study, we investigate the impact of K3 and K5 on lymphotoxin receptor (LTβR) ligands, LTβ and LIGHT, which are type II transmembrane proteins and function as pivotal immune mediators during virus infection.

View Article and Find Full Text PDF

The DNA damage response (DDR) mechanisms that allow cells to tolerate DNA replication stress are critically important for genome stability and cell viability. Using an unbiased genetic screen we identify a role for the RING finger E3 ubiquitin ligase RNF25 in promoting DNA replication stress tolerance. In response to DNA replication stress, RNF25-deficient cells generate aberrantly high levels of single-stranded DNA (ssDNA), accumulate in S-phase and show reduced mitotic entry.

View Article and Find Full Text PDF

Rad5 and Ubc4 directly ubiquitinate PCNA at Lys164 in vitro.

J Biol Chem

January 2025

Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, 300070 Tianjin, P. R. CHINA. Electronic address:

Ubiquitination of the proliferating cell nuclear antigen (PCNA) by the budding yeast protein Rad5 have important functions in replication stress responses. Rad5 together with the Ubc13-Mms2 complex attaches Lys63-linked ubiquitin chain to a highly conserved Lys164 residue in PCNA. The reaction requires prior PCNA mono-ubiquitination by the Rad6-Rad18 complex and signals for error-free DNA damage tolerance responses.

View Article and Find Full Text PDF

Mediator25 (MED25) has been ascribed as a signal-processing and -integrating center that controls jasmonate (JA)-induced and MYC2-dependent transcriptional output. A better understanding of the regulation of MED25 stability will undoubtedly advance our knowledge of the precise regulation of JA signaling-related transcriptional output. Here, we report that Arabidopsis MED16 activates JA-responsive gene expression by promoting MED25 stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!