We investigated changes of prokaryotic diversity during bioremediation experiments carried out on anoxic marine sediments characterized by high hydrocarbon and metal content. Microcosms containing contaminated sediments were amended with lactose and acetate and incubated in anaerobic conditions up to 60 d at 20 or 35 °C. Microcosms displaying higher degradation efficiency of hydrocarbons were characterized by the dominance of Alphaproteobacteria and Methanosarcinales and the lack of gene sequences belonging to known hydrocarbonoclastic bacteria. Multivariate analyses support the hypothesis that Alphaproteobacteria are important for hydrocarbon degradation and highlight a potential synergistic effect of archaea and bacteria in changes of metal partitioning. Overall, these results point out that the identification of changes in the prokaryotic diversity during bioremediation of contaminated marine sediments is not only important for the improvement of bio-treatment performance towards hydrocarbons, but also for a better comprehension of changes occurring in metal partitioning which affect their mobility and toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2012.05.038 | DOI Listing |
Environ Microbiol
January 2025
Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, China.
Anaerobic digestion (AD) of organic wastes relies on the interaction and cooperation of various microorganisms. Phages are crucial components of the microbial community in AD systems, but their diversity and interactions with the prokaryotic populations are still inadequately comprehended. In this study, 2121 viral operational taxonomic units (vOTUs) were recovered from 12 anaerobic fatty acid-fed reactors.
View Article and Find Full Text PDFISME Commun
January 2024
School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, QLD 4072, Australia.
Anthropogenic influences have drastically increased nutrient concentrations in many estuaries globally, and microbial communities have adapted to the resulting hypereutrophic ecosystems. However, our knowledge of the dominant microbial taxa and their potential functions in these ecosystems has remained sparse. Here, we study prokaryotic community dynamics in a temporal-spatial dataset, from a subtropical hypereutrophic estuary.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, Moscow Region, 142290, Russia.
VKM Ac-1390 (family Microbacteriaceae, class Actinomycetes) contains three rhamnose-containing glycopolymers in the cell wall, the structures of which were established by chemical and NMR spectroscopy methods. The first polymer, a rhamnomannan, consists of repeating tetrasaccharide units with xylopyranose side residues, →2)-α-[β-D-Xyl-(1→3)]-D-Rha-(1→3)-α-D-Man-(1→2)-α-D-Rha-(1→3)-α-D-Man-(1→. The second polymer found in minor amounts, is a rhamnan, →2)-α-D-Rha-(1→3)-α-D-Rha-(1→.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
The present study examined the effect of the three different altitudes on the enzymatic activity and the prokaryotic communities of the rhizosphere of (L.) A.DC.
View Article and Find Full Text PDFFront Microbiol
January 2025
Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France.
Introduction: Agriculture is undergoing an agroecological transition characterized by adopting new practices to reduce chemical fertilizer inputs. In this context, digestates are emerging as sustainable substitutes for mineral fertilizers. However, large-scale application of digestates in agricultural fields requires rigorous studies to evaluate their long-term effects on soil microbial communities, which are crucial for ecosystem functioning and resilience.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!