Development and implementation of global animal disease surveillance has been limited by the lack of information systems that enable near real-time data capturing, sharing, analysis, and related decision- and policy-making. The objective of this paper is to describe requirements for global animal disease surveillance, including design and functionality of tools and methods for visualization and analysis of animal disease data. The paper also explores the potential application of techniques for spatial and spatio-temporal analysis on global animal disease surveillance, including for example, landscape genetics, social network analysis, and Bayesian modeling. Finally, highly pathogenic avian influenza data from Denmark and Sweden are used to illustrate the potential application of a novel system (Disease BioPortal) for data sharing, visualization, and analysis for regional and global surveillance efforts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185519 | PMC |
http://dx.doi.org/10.1016/j.sste.2011.07.006 | DOI Listing |
Ir Vet J
January 2025
Animal Health Ireland, 4-5 The Archways, Carrick On Shannon, Co. Leitrim, N41 WN27, Ireland.
Background: Biosecurity measures are crucial to the introduction and spread of pathogens both within and between farms. External biosecurity focuses on preventing pathogens from entering or leaving the farm, while internal biosecurity aims to limit or stop the spread of pathogens within the farm. Implementing biosecurity measures not only protects animals from disease but also has positive effects on productivity, welfare and farm profitability.
View Article and Find Full Text PDFMicrobiome
January 2025
Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
Background: Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the critical role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health intervention (GHI) strategies to ensure optimal outcomes in poultry farming. In this study, across three broiler production cycles, we compared the metagenomes and performance of broilers provided with ionophores (as the control group) against birds subjected to five different GHI combinations involving vaccination, probiotics, prebiotics, essential oils, and reduction of ionophore use.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China.
Early diagnosis is critical for providing a timely window for effective therapy in pulmonary fibrosis (PF); however, achieving this remains a significant challenge. The distinct honeycombing patterns observed in computed tomography (CT) for the primary diagnosis of PF are typically only visible in patients with moderate to severe disease, often leading to missed opportunities for early intervention. In this study, we developed a nanoprobe designed to accumulate at fibroblastic foci and loaded with the CT sensitizer iodide to enable effective early diagnosis of PF.
View Article and Find Full Text PDFMol Med
January 2025
Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
Background: Lysinuric protein intolerance is a rare autosomal disorder caused by mutations in the Slc7a7 gene that lead to impaired transport of neutral and basic amino acids. The gold standard treatment for lysinuric protein intolerance involves a low-protein diet and citrulline supplementation. While this approach partially improves cationic amino acid plasma levels and alleviates some symptoms, long-term treatment is suggested to be detrimental and may lead to life-threatening complications characterized by a wide range of hematological and immunological abnormalities.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
Diabetes is characterized by variable loss of insulin-producing beta cells, and new regenerative approaches to increasing the functional beta cell mass of patients hold promise for reversing disease progression. In this Review, we summarize recent chemical biology breakthroughs advancing our knowledge of beta cell regeneration. We present current chemical-based tools, sensors and mechanistic insights into pathways that can be targeted to enhance beta cell regeneration in model organisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!