Facile fabrication of HDPE-g-MA/nanodiamond nanocomposites via one-step reactive blending.

Nanoscale Res Lett

Department of Materials, College of Engineering, Zhejiang Agriculture & Forestry University, Lin'an, Hangzhou, 311300, China.

Published: June 2012

AI Article Synopsis

Article Abstract

In this letter, nanocomposites based on maleic anhydride grafted high density polyethylene (HDPE-g-MA) and amine-functionalized nanodiamond (ND) were fabricated via one-step reactive melt-blending, generating a homogeneous dispersion of ND, as evidenced by transmission electron microscope observations. Thermal analysis results suggest that addition of ND does not affect significantly thermal stability of polymer matrix in nitrogen. However, it was interestingly found that incorporating pure ND decreases the thermal oxidation degradation stability temperature, but blending amino-functionalized ND via reactive processing significantly enhances it of HDPE in air condition. Most importantly, cone tests revealed that both ND additives and reactive blending greatly reduce the heat release rate of HDPE. The results suggest that ND has a potential application as flame retardant alternative for polymers. Tensile results show that adding ND considerably enhances Young's modulus, and reactive blending leads to further improvement in Young's modulus while hardly reducing the elongation at break of HDPE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439249PMC
http://dx.doi.org/10.1186/1556-276X-7-355DOI Listing

Publication Analysis

Top Keywords

reactive blending
12
one-step reactive
8
young's modulus
8
reactive
5
facile fabrication
4
fabrication hdpe-g-ma/nanodiamond
4
hdpe-g-ma/nanodiamond nanocomposites
4
nanocomposites one-step
4
blending
4
blending letter
4

Similar Publications

Exploiting novel crosslinking chemistry, this study pioneers the use of waterborne polyurethane (WPU) to chemically crosslink porcine-derived gelatin, producing enhanced gelatin hydrogel films through a solvent-casting method. Our innovative approach harnesses the reactive isocyanate groups of WPU, coupling them effectively with gelatin's hydroxyl and primary amino groups to form robust urea and urethane linkages within the hydrogel matrix. This method not only preserves the intrinsic elasticity of polyurethane but also significantly augments the films' tensile strength and strain.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a common serious complication of sepsis that is characterized by the rapid deterioration of kidney function. Neng-Jing-Huo (NJH) is an essential oil blend, including Gaultheria procumbens, Zingiber officinale, Bulnesia sarmientoi, Artemisia vulgaris, and Styrax benzoin oils, with antimicrobial, antioxidant, and anti-inflammatory activities. Here, we investigated the effects of NJH on oxidative stress, inflammatory response, and apoptosis in an in vitro septic AKI model and explored the underlying mechanisms.

View Article and Find Full Text PDF

Background: Inflammation is a critical protective response in the body, essential for combating infections and healing injuries. However, chronic inflammation can be harmful and significantly contribute to the development and progression of chronic diseases, with macrophage-mediated responses being central to these processes. This study presents "SBR-Pel," a new therapeutic blend of Shinbaro tab (SBR), a traditional herbal formula, and pelubiprofen (Pel), a non-steroidal anti-inflammatory drug, and investigated their combined anti-inflammatory effects to create a treatment that both improves efficacy and reduces side effects.

View Article and Find Full Text PDF

A Modified Polydopamine Nanoparticle Loaded with Melatonin for Synergistic ROS Scavenging and Anti-Inflammatory Effects in the Treatment of Dry Eye Disease.

Adv Healthc Mater

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.

Dry eye disease (DED) is a multifaceted ocular surface disorder that significantly impacts patients' daily lives and imposes a substantial economic burden on society. Oxidative stress, induced by the overproduction of reactive oxygen species (ROS), is a critical factor perpetuating the inflammatory cycle in DED. Effectively scavenging ROS is essential to impede the progression of DED.

View Article and Find Full Text PDF

Enhancing Mechanical and Antibacterial Performance of Tire Waste/Epoxidized Natural Rubber Blends Using Modified Zinc Oxide-Silica.

Polymers (Basel)

January 2025

Sustainable Polymer & Innovative Composite Materials Research Group, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.

This study investigates the synergistic effects of incorporating modified zinc oxide-silica (ZnO-SiO) into tire waste (TW) and epoxidized natural rubber (ENR) blends, with a focus on crosslinking dynamics, mechanical reinforcement, and antibacterial activity. The addition of ZnO-SiO significantly enhanced crosslink density, as evidenced by increased torque and accelerated cure rates. An optimal concentration of 10 phr was found to yield the highest performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!