Syntheses and in vitro anticancer properties of novel radiosensitizers.

Chem Biol Drug Des

Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA.

Published: December 2012

AI Article Synopsis

  • A series of novel compounds were synthesized as potential radiosensitizers for cancer treatment, focusing on specific halogenated nitrobenzene derivatives.
  • Six compounds showed significant anticancer activity against prostate and breast cancer cell lines, with compound 3d emerging as the most potent, outperforming the standard drug doxorubicin.
  • The results indicate promising effectiveness of compound 3d, with plans for further in vivo testing to validate these findings with and without radiation.

Article Abstract

Series of 4-(ethylsulfonyl)-1-halogen-2-nitrobenzene (3a-e) and 1-(4-halogen-3-nitrophenyl) propan-1-one (5a-d) analogs designed as novel radiosensitizers using bromonitropropiophenone and bromonitrobenzonitrile as lead compounds were synthesized. The anticancer activities of the compounds were evaluated in vitro using human prostate cancer (DU-145) and breast cancer (MCF-7) cell lines and the MTT assay. From the series, six compounds (3b-e, 5b-c) exhibited potent growth inhibitory effects against both cell lines. The most active, compound 3d, is an iodosulfone and is significantly more potent than the lead compound 5c at 10 μm. Compounds were then compared with doxorubicin, a clinically used anticancer compound for breast and prostate cancers. Our most active compound 3d is more effective than doxorubicin at the dose level of 10 μm at 3 days after radiation, cell viabilities of 18%, 13% compared to 87%, 94% against MCF-7, and 15%, 20% compared to 60%, 75% against DU-145 without and with radiation, respectively. At 10 μm, compound 5c had no effects as compared to control, whereas compound 3d reduced DU-145 cell viability to 16% and that of MCF-7 cells to 9% even at 5 days after radiation. These results are very encouraging. Future studies include testing the compounds in vivo with and without radiation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1747-0285.2012.01442.xDOI Listing

Publication Analysis

Top Keywords

novel radiosensitizers
8
cell lines
8
active compound
8
days radiation
8
compound
6
compounds
5
syntheses vitro
4
vitro anticancer
4
anticancer properties
4
properties novel
4

Similar Publications

Objective: Endometrial cancer (EC) is a malignant tumor with various histological subtypes and molecular phenotypes. The evaluation of drug resistance is important for cancer treatment. Progesterone resistance is the major challenge in EC.

View Article and Find Full Text PDF

Resistance to radiotherapy remains a critical barrier in treating colorectal cancer (CRC), particularly in cases of locally advanced rectal cancer (LARC). To identify key kinases involved in CRC radioresistance, we employed a kinase-targeted CRISPR-Cas9 library screen. This approach aimed to identify potential kinase inhibitors as radiosensitizers.

View Article and Find Full Text PDF

Development of optical microneedle-lens array for photodynamic therapy.

Biomed Microdevices

January 2025

Institute of Industrial Science, The University of Tokyo, Meguro-Ku, 153-8505, Tokyo, Japan.

Recently, photodynamic therapy (PDT) which involves a photosensitizer (PS), a special drug activated by light, and light irradiation has been widely used in treating various skin diseases such as port-wine stain as well as cancers such as melanoma and non-melanoma skin cancers. PDT comprises two general steps: the introduction of PS into the body or a specific spot to be treated, and the irradiation process using a light source with a specific wavelength to excite the PS. Although PDT is gaining great attention owing to its potential as a targeted approach in the treatment of skin cancers, several limitations still exist for practical use.

View Article and Find Full Text PDF

Objectives: Hepatocellular carcinoma (HCC) represents the third-most prevalent cancer in humans worldwide. The current study's objective is to search for the potentiality of H. Wendl () leaf extract in a nanoemulsion (NE) form in enhancing radiotherapy against HCC induced in rats using diethylnitrosamine (DEN).

View Article and Find Full Text PDF

Metal-Phenolic Nanomedicines Targeting Fatty Acid Metabolic Reprogramming to Overcome Immunosuppression in Radiometabolic Cancer Therapy.

ACS Appl Mater Interfaces

January 2025

Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China.

Radiation therapy (RT) is a prevalent cancer treatment; however, its therapeutic outcomes are frequently impeded by tumor radioresistance, largely attributed to metabolic reprogramming characterized by increased fatty acid uptake and oxidation. To overcome this limitation, we developed polyphenol-metal coordination polymer (PPWQ), a novel nanoradiotherapy sensitizer specifically designed to regulate fatty acid metabolism and improve RT efficacy. These nanoparticles (NPs) utilize a metal-phenolic network (MPN) to integrate tungsten ions (W), quercetin (QR), and a PD-L1-blocking peptide within a PEG-polyphenol scaffold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!