Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, it is shown that for the first time that, using information-entropy-based methods, one can quantitatively explore the relative impact of a wide multidimensional array of electronic and chemical bonding parameters on the structural stability of intermetallic compounds. Using an inorganic AB2 compound database as a template data platform, the evolution of design rules for crystal chemistry based on an information-theoretic partitioning classifier for a high-dimensional manifold of crystal chemistry descriptors is monitored. An application of this data-mining approach to establish chemical and structural design rules for crystal chemistry is demonstrated by showing that, when coupled with first-principles calculations, statistical inference methods can serve as a tool for significantly accelerating the prediction of unknown crystal structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ci200628z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!