Three water-dispersible graphene derivatives, graphene oxide (GO), sulfonated graphene oxide (SGO), and sulfonated graphene (SG), were prepared and probed for their plausible cytotoxicity by non-invasive electric cell-substrate impedance sensing (ECIS). With Spodoptera frugiperda Sf9 insect cells adhered on gold microelectrodes as an active interface, it is feasible to monitor changes in impedance upon exposure to different graphene derivatives. Sf9 insect cells were then exposed to different concentrations of graphene derivatives and their spreading and viability were monitored and quantified by ECIS in real-time. On the basis of the 50% inhibition concentration (ECIS50), none of the graphene derivatives were judged to have any significant cytotoxicity with respect to the chosen cell line as the ECIS50 values were all above 100 μg/mL. However, all graphene derivatives exhibited inhibitory effects on the Sf9 response at the cell spreading level with the following order: SG (ECIS50 = 121 ± 8 μg/mL), SGO (ECIS50 = 151 ± 9 μg/mL), and GO (ECIS50 = 232 ± 27 μg/mL), reflecting differences observed in their ζ-potential and surface area. The presence of phenyl sulfonyl groups in SGO and SG improves their aqueous dispersity which enables these materials to have a greater inhibitory effect on Sf9 insect cells in comparison to GO. Such results were corroborated well with the cell count and viability by the Trypan Blue exclusion assay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am301060z | DOI Listing |
Polymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Middle Tennessee State University, 440 Friendship Street, Murfreesboro, TN 37132, USA.
Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong 037009, China.
Desalinating seawater is a crucial method for addressing the shortage of freshwater resources. High-efficiency, low-cost, and environmentally friendly desalination technologies are key issues that urgently need to be addressed. This work used as a matrix material and prepared @Fe-GA through a complexation reaction to enhance the water evaporation rate and photothermal conversion efficiency of seawater desalination.
View Article and Find Full Text PDFLangmuir
January 2025
Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing 100192, China.
In this work, laser-induced graphene from kraft paper (kraft paper-LIG) was employed for the nonenzymatic electrochemical sensing of dopamine (DA). We reported the fabrication and characterization of a disposable, cost-effective, kraft-based electrochemical dopamine sensor with the sensing electrode consisting of laser-induced graphene derived from kraft paper. Kraft paper-LIG was formed by the femtosecond laser modification of kraft paper into a three-dimensional (3D) graphene arrangement.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Center for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, Via R. Rubattino 81 20134 Milan, Italy. Electronic address:
Hypothesis: Interfacial solvation forces arise from the organisation of liquid molecules near solid surfaces. They are crucial to fundamental phenomena, spanning materials science, molecular biology, and technological applications, yet their molecular details remain poorly understood. Achieving a complete understanding requires imaging techniques, such as three-dimensional atomic force microscopy (3D AFM), to provide atomically resolved images of solid-liquid interfaces (SLIs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!