Context: Titanium dioxide nanoparticles (nano-TiO(2)) and ethanol vapors are air contaminants with increasing importance. The presence of a pathological pulmonary condition, such as asthma, may increase lung susceptibility to such contaminants.

Objective: This study aimed to investigate if exposure to inhaled ethanol vapors or nano-TiO(2) can modulate the rat pulmonary inflammatory response resulting from an allergic asthmatic reaction.

Materials And Methods: Brown Norway rats were sensitized (sc) and challenged (15 min inhalation, 14 days later) with chicken egg ovalbumin (OVA). Leukocytes were counted in bronchoalveolar lavages (BAL) performed at 6, 24, 36, 48 and 72 h following the challenge and either after ethanol exposures (3000 ppm, 6 h/day, daily) or at 48 h (peak inflammation) for nano-TiO(2) exposures (9.35 mg/m(3) aerosol for 6 and 42 h after the OVA challenge). For the nano-TiO(2) exposures, plasma and BAL cytokines were measured and lung histological analyzes were performed.

Results: Exposure to ethanol did not significantly affect BAL leukocytes after OVA challenge. Exposure to nano-TiO(2) significantly decreased BAL leukocytes compared to OVA-challenged controls. Plasma and BAL IL-4, IL-6, and INF-γ levels were also decreased in the nano-TiO(2) group.

Discussion: While ethanol vapors do not modify the pulmonary inflammation in rats during an asthmatic response, a surprising protective effect for agglomerated nano-TiO(2) was observed. A putative mechanistic basis involving a decrease in the Th2 response caused by OVA is proposed.

Conclusion: Allergic pulmonary inflammation is not up-regulated by inhalation of the pollutants ethanol and nano-TiO(2). On the contrary, nano-TiO(2) decreases lung inflammation in asthmatic rats.

Download full-text PDF

Source
http://dx.doi.org/10.3109/08958378.2012.696741DOI Listing

Publication Analysis

Top Keywords

ethanol vapors
16
pulmonary inflammation
12
nano-tio2
9
inflammation asthmatic
8
asthmatic rats
8
nano-tio2 exposures
8
ova challenge
8
plasma bal
8
bal leukocytes
8
ethanol
7

Similar Publications

Comparative Study of Crucial Properties of Packaging Based on Polylactide and Selected Essential Oils.

Foods

January 2025

Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Pułaskiego 10, 70-322 Szczecin, Poland.

In order to establish the differences in packaging containing various essential oils, polylactide (PLA)-based polymeric films incorporating poly(ethylene glycol) (PEG), clove (C), grapefruit (G), rosemary (R), and tea tree (T) essential oils were obtained and subsequently analyzed. In addition to examining structure and morphology, the polymer films underwent analyses that are particularly important with regard to contact with food. Mechanical and antioxidant properties, water vapor transmission rate (WVTR), and analysis of barrier properties against ultraviolet (UV) radiation, as well as the migration of ingredients into food simulants such as 10% / solutions of ethanol, 3% / acetic acid solution, and isooctane, were among the critical studies conducted.

View Article and Find Full Text PDF

The large-scale implementation of 2D material-based membranes is hindered by mechanical stability and mass transport control challenges. This work describes the fabrication, characterisation, and testing of self-standing graphene oxide (GO) membranes cross-linked with oxides such as FeO, AlO, CaSO, NbO, and a carbide, SiC. These cross-linking agents enhance the mechanical stability of the membranes and modulate their mass transport properties.

View Article and Find Full Text PDF

The advancement of active packaging for food conservation has attracted considerable interest over time. In the present study, we aims to create and examine active films composed of chitosan (CS), poly(vinyl alcohol) (PVA), and syzygium guineense plant extract (SYZ) for potential use in food preservation. We examined the impact of ethanol extracts from the SYZ plant on the films' tensile strength, physical, antibacterial, and anti-oxidant properties.

View Article and Find Full Text PDF

Anti-proliferative and photodynamic activities of Senna didymobotrya (Fresen.) leaf alkaloid-rich extracts against breast cancer cells.

BMC Complement Med Ther

January 2025

Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg, 2028, South Africa.

Background: Amongst all neoplastic diseases, breast cancer represents a major cause of death among the female population in developed and developing countries. Since alkaloid drugs are commonly used in chemotherapy to manage this disease, this study investigated the anti-proliferative effectiveness of alkaloid-rich fractions of Senna didymobotrya leaves only and with laser irradiation against MCF-7 breast cancer cells.

Method And Materials: A powdered sample of the plant leaves was extracted with 50% ethanol, filtered and their pH was adjusted with acid and base solution followed by partitioning with chloroform and ethyl acetate solvents.

View Article and Find Full Text PDF

The upgrading of ethanol to -butanol marks a major breakthrough in the field of biofuel technology, offering the advantages of compatibility with existing infrastructure while simultaneously offering potential benefits in terms of transport efficiency and energy density. With its lower vapour pressure and reduced corrosiveness compared to ethanol, -butanol is easier not only to manage but also to transport, eliminating the need for costly infrastructure changes. This leads to improved fuel efficiency and reduced fuel consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!