Targeted delivery of contrast agents is a highly desirable strategy for enhancing diagnostic efficiency and reducing side effects and toxicity. Water-soluble and tumor-targeting superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by loading hydrophobic SPIONs into micelles assembled from an amphiphilic block copolymer poly(ethylene glycol)- poly(ε-caprolactone) (PEG-PCL) bearing folate in the distal ends of PEG chains. Compared to the water-soluble SPIONs obtained by small molecular surfactant coating, ultrasmall SPION encapsulation with PEG-PCL micelles (PEG-PCL-SPIONs) simultaneously increases transverse (r(2)) and decreases longitudinal (r(1)) magnetic resonance (MR) relaxivities of water proton in micelle solution, leading to a notably high r(2)/r(1) ratio up to 78, which makes the PEG-PCL-SPIONs a highly sensitive MR imaging (MRI) T(2) contrast agent. The mean size of folate-attached SPION micelles (Fa-PEG-PCL-SPIONs) is 44 ± 3 nm on average, ideal for in vivo MRI applications in which long circulation is greatly determined by small particle size and is highly desirable. Prussian blue staining of BEL-7402 cells over-expressing folate receptors, after incubation with micelle-containing medium, demonstrated that folate functionalization of the magnetic particles significantly enhanced their cell uptake. The potential of Fa-PEG-PCL-SPIONs as a potent MRI probe for in vivo tumor detection was assessed. At 3 hours after intravenous injection of the Fa-PEG-PCL-SPION solution into mice bearing subcutaneous xenografts of human BEL-7402 hepatoma, a 41.2% signal intensity decrease was detected in the T(2)-weighted MR images of the tumor, indicating the efficient accumulation of Fa-PEG-PCL-SPIONs in the tumor tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383322PMC
http://dx.doi.org/10.2147/IJN.S25739DOI Listing

Publication Analysis

Top Keywords

superparamagnetic iron
8
iron oxide
8
highly desirable
8
folate-targeted polymeric
4
micelles
4
polymeric micelles
4
micelles loaded
4
loaded ultrasmall
4
ultrasmall superparamagnetic
4
oxide combined
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!