Hypothalamic gonadotropin-releasing hormone (GnRH) neurons integrate the multiple internal and external cues that regulate sexual reproduction. In contrast to other neurons that exhibit extensive dendritic arbors, GnRH neurons usually have a single dendrite with relatively little branching. This largely precludes the integration strategy in which a single dendritic branch serves as a unit of integration. In the present study, we identify a gradient in L-type calcium channels in dendrites of mouse GnRH neurons and its interaction with GABAergic and glutamatergic inputs. Higher levels of L-type calcium channels are in somata/proximal dendrites (i.e., 0-26 μm) and distal dendrites (∼130 μm dendrite length), but intervening midlengths of dendrite (∼27-130 μm) have reduced L-type calcium channels. Using uncaging of GABA, there is a decreasing GABAergic influence along the dendrite and the impact of GABA(A) receptors is dependent on activation of L-type calcium channels. This results in amplification of proximal GABAergic signals and attenuation of distal dendritic signals. Most interestingly, the intervening dendritic regions create a filter through which only relatively high-amplitude, low-frequency GABAergic signaling to dendrites elicits action potentials. The findings of the present study suggest that GnRH dendrites adopt an integration strategy whereby segments of single nonbranching GnRH dendrites create functional microdomains and thus serve as units of integration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401604PMC
http://dx.doi.org/10.1523/JNEUROSCI.4188-11.2012DOI Listing

Publication Analysis

Top Keywords

l-type calcium
20
calcium channels
20
gnrh neurons
12
functional microdomains
8
hypothalamic gonadotropin-releasing
8
gonadotropin-releasing hormone
8
integration strategy
8
gnrh dendrites
8
dendrites
6
l-type
5

Similar Publications

To encode continuous sound stimuli, the inner hair cell (IHC) ribbon synapses utilize calcium-binding proteins (CaBPs), which reduce the inactivation of their Ca1.3 calcium channels. Mutations in the gene underlie non-syndromic autosomal recessive hearing loss DFNB93.

View Article and Find Full Text PDF

The global incidence of mortality due to heart failure (HF) is on the rise, presenting a significant challenge in various regions, including Japan. There is an urgent need for innovative prevention and treatment strategies to address this issue. Traditional medicine, particularly Japanese Kampo medicine (JKM), has been proposed as a potential therapeutic approach and has undergone examination in clinical trials related to HF.

View Article and Find Full Text PDF

Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), result from pulmonary edema and alveolar-capillary barrier disruption due to inflammation, often triggered by conditions like sepsis. Sepsis-induced ALI (SALI) involves extensive damage to vascular endothelium and alveolar epithelium, leading to respiratory failure. Our study explores ferroptosis, an iron-dependent cell death pathway, and calcium dysregulation in SALI.

View Article and Find Full Text PDF

Regulation of SR and mitochondrial Ca signaling by L-type Ca channels and Na/Ca exchanger in hiPSC-CMs.

Cell Calcium

December 2024

Cardiac Signaling Center of USC, MUSC and Clemson University, 68 President St BEB 306, Charleston, SC 29425, USA. Electronic address:

Rationale & Methods: While signaling of cardiac SR by surface membrane proteins (I & I) is well studied, the regulation of mitochondrial Ca by plasmalemmal proteins remains less explored. Here we have examined the signaling of mitochondria and SR by surface-membrane calcium-transporting proteins, using genetically engineered targeted fluorescent probes, mito-GCamP6 and R-CEPIA1er.

Results: In voltage-clamped and TIRF-imaged cardiomyocytes, low Na induced SR Ca release was suppressed by short pre-exposures to ∼100 nM FCCP, suggesting mitochondrial Ca contribution to low Na triggered SR Carelease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!