Only about half of bacterial species use an asparaginyl-tRNA synthetase (AsnRS) to attach Asn to its cognate tRNA(Asn). Other bacteria, including the human pathogen Moraxella catarrhalis, a causative agent of otitis media, lack a gene encoding AsnRS, and form Asn-tRNA(Asn) by an indirect pathway catalysed by two enzymes: first, a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) catalyses the formation of aspartyl-tRNA(Asn) (Asp-tRNA(Asn)); then, a tRNA-dependent amidotransferase (GatCAB) transamidates this 'incorrect' product into Asn-tRNA(Asn). As M. catarrhalis has a Gln-tRNA synthetase, its GatCAB functions as an Asp-tRNA(Asn) amidotransferase. This pathogen rapidly evolved to about 90 % ampicillin resistance worldwide by insertion of a bro-1 β-lactamase gene within the gatCAB operon. Comparison of the GatCAB subunits from bro-1 β-lactamase-positive and bro-negative strains showed that the laterally transferred bro-1 gene, inserted into the gatCAB operon, affected the C-terminal sequence of GatA. The identity between the C-terminal sequences of GatA(wt) (residues 479-491) and of GatA(BRO-1) (residues 479-492) was about 36 %, whereas the rest of the GatA sequence was relatively conserved. The characterization of these two distinct GatCABs as well as the hybrid GatCAB containing GatA(1-478)(wt)(479-492)(BRO-1) and truncated GatCAB enzymes of M. catarrhalis showed that the substitution in GatA(wt) of residues 479-492 of GatA(BRO-1) causes increased specificity for glutamine, and decreased specificity for Asp-tRNA(Asn) in the transamidation reaction. We conclude that the bro gene insertion has altered the kinetic parameters of Asp-tRNA(Asn) amidotransferase, and we propose a model for gatA evolution after the insertion of bro-1 at the carboxyl end of gatA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.060095-0 | DOI Listing |
Microbiology (Reading)
September 2012
Centre de Recherche en Infectiologie, CHUQ Pavillon CHUL, 2705 boul. Laurier, RC-709, QC G1V 4G2, Canada.
Only about half of bacterial species use an asparaginyl-tRNA synthetase (AsnRS) to attach Asn to its cognate tRNA(Asn). Other bacteria, including the human pathogen Moraxella catarrhalis, a causative agent of otitis media, lack a gene encoding AsnRS, and form Asn-tRNA(Asn) by an indirect pathway catalysed by two enzymes: first, a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) catalyses the formation of aspartyl-tRNA(Asn) (Asp-tRNA(Asn)); then, a tRNA-dependent amidotransferase (GatCAB) transamidates this 'incorrect' product into Asn-tRNA(Asn). As M.
View Article and Find Full Text PDFMol Microbiol
April 2000
Eijkman-Winkler Institute for Microbiology, Infectious Diseases and Inflammation, University Hospital Utrecht, 3508 GA Utrecht, The Netherlands.
The dramatic rise in BRO-producing M. catarrhalis strains observed in the last decades is without precedence. The aim of this study was to elucidate the events that led to the emergence of BRO-1 and BRO-2 beta-lactamases.
View Article and Find Full Text PDFAntimicrob Agents Chemother
April 1996
Eijkman-Winkler Institute for Medical Microbiology, University Hospital Utrecht, The Netherlands.
A rapid increase in the prevalence of beta-lactamase-producing Moraxella (Branhamella) catarrhalis strains has been noticed during the last decades. Today, more than 80% of strains isolated worldwide produce beta-lactamase. To investigate beta-lactamase(s) of M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!