Two in two: Dioxygenation of alkenyl boronic acids has been achieved with N-hydroxyphthalimide. The two-step process involves etherification of an alkenyl boronic acid with N-hydroxyphthalimide followed by a [3,3] rearrangement. The dioxygenated product can then be hydrolyzed to form either the corresponding α-hydroxy ketone or the α-benzoyloxy ketone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201202704 | DOI Listing |
Org Lett
December 2024
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
We present a tandem aza-Heck/Suzuki cross-coupling reaction of -phenyl hydroxamic ethers with readily available arylboronic and alkenyl boronic acids. This protocol is enabled by a palladium catalyst paired with chiral phosphoramidite ligands, particularly under mild reaction conditions, yielding efficient and succinct synthetic routes to chiral isoindolinones with high enantioselectivity. Furthermore, this reaction exhibits excellent functional group compatibility and a rich diversity of subsequent transformations.
View Article and Find Full Text PDFJ Org Chem
December 2024
School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
Although the radical hydroboration of alkenes with N-heterocyclic carbene (NHC) borane is well documented, the radical hydroboration of alkynes, especially terminal alkynes, remains challenging. Herein, a photoredox-catalyzed radical -hydroboration of alkynes with NHC borane has been developed, which provided various alkenyl boron compounds in moderate to good yields. This protocol exhibits a broad substrate scope, as both internal and terminal alkynes were compatible.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Chemistry and Chemical Biology, Stevens Institute of Technology Hoboken NJ 07307 USA
Allylic diboronates are highly valuable reagents in organic synthesis. Existing methods predominantly yield alkyl-substituted allylic diboronates, while the incorporation of electrophilic carbonyl groups conjugated to these allylic systems remains unknown. We present a strain-release promoted cycloaddition-based strategy that enabled access to unprecedented carbonyl conjugated secondary allylic diborons.
View Article and Find Full Text PDFNat Commun
November 2024
Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China.
The catalytic asymmetric synthesis of axially chiral alkenes remains a daunting challenge due to the lower rotational barrier, especially for longer stereogenic axis (e.g. C-B axis).
View Article and Find Full Text PDFNat Commun
November 2024
State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, PR China.
The transition metal-catalysed dicarbofunctionalisation of unactivated alkenes normally requires exogenous strong coordinated directing groups, thus reducing the overall reaction efficiency. Here, we report a ligand-enabled Ni(II)-catalysed dicarbofunctionalisation of unactivated alkenes with aryl/alkenyl boronic acids and alkyl halides as the coupling partners with a diverse range of native functional groups as the directing group. This dicarbofunctionalisation protocol provides an efficient and direct route towards vicinal 1,2-disubstituted alkanes using primary, secondary, tertiary amides, sulfonamides, as well as secondary and tertiary amines under redox-neutral conditions that are challenging to access through conventional methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!