The formation and atom distribution in two-dimensional Pd(x)Ag(1-x)/Pd(111) monolayer surface alloys were studied by high resolution scanning tunnelling microscopy (STM) with chemical contrast. From short-range order (SRO) parameters, we calculate preferences for like or unlike nearest neighbours to elucidate the mixing behaviour of the two components for various sub monolayer Ag surface contents. In the regime of low Ag surface contents (<40% Ag), the system shows a weak tendency towards phase separation, high Ag coverages (>60% Ag) result in a disperse distribution of the atoms in the surface. Effective pair interactions (EPIs) were derived by comparing the measured distribution with distributions obtained using Monte Carlo (MC) simulations. From the EPIs, we derived a function for the mixing energy, which can describe the change from clustering to a disperse distribution. The effects of the resulting surface atom distributions and of the Ag coverage dependent surface mixing/demixing on catalytic reactions are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2cp41104k | DOI Listing |
Water Sci Technol
January 2025
The Institute of Applied Research, The Galilee Society, Shefa-Amr 2020000, Israel; Agrobics Ltd, Shefa-Amr 2020000, Israel; Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel 2161002, Israel.
The advanced anaerobic technology (AAT), developed based on an immobilized high-rate anaerobic reactor, was applied as a pretreatment of municipal wastewater (WW) at Karmiel's treatment plant in Israel. The demonstration-scale AAT (21 m) system was operated at a flow rate of 100 mday municipal WW mixed with olive mill wastewater (OMW) (0.5 mday) to simulate the scenario of illegal discharge of agro-industrial WW.
View Article and Find Full Text PDFNat Mater
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
Cells use 'active' energy-consuming motor and filament protein networks to control micrometre-scale transport and fluid flows. Biological active materials could be used in dynamically programmable devices that achieve spatial and temporal resolution that exceeds current microfluidic technologies. However, reconstituted motor-microtubule systems generate chaotic flows and cannot be directly harnessed for engineering applications.
View Article and Find Full Text PDFBr J Sports Med
January 2025
Division of Preventative Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
Objective: To compare physical activity (PA) over midlife between (1) former collegiate athletes and non-athletes and (2) among athletes in different sports.
Methods: The Harvard Alumni Health Study (HAHS) is a prospective cohort study of male undergraduates who completed serial questionnaires regarding PA and health status between 1962 and 1993. PA was categorised by intensity (<3 METs, light; 3 to <6 METs, moderate; ≥6 METs, vigorous), and energy expenditure (kilocalories (kcal)/week) was estimated at each intensity and in total.
J Phys Chem A
January 2025
Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States.
The kinetics of electronically inelastic quenching of O(Δ) and O(Σ) by collisions with O(P) have been investigated using mixed quantum-classical trajectories governed by adiabatic potential energy surfaces and state couplings generated from a recently developed diabatic potential energy matrix (DPEM) for the 14 lowest-energy A' states of O. Using the coherent switching with decay of mixing (CSDM) method, dynamics calculations were performed both with 14 coupled electronic states and with 8 coupled electronical states, and similar results were obtained. The calculated thermal quenching rate coefficients are generally small, but they increase with temperature.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Aramco Americas, Boston Research Center, Cambridge, MA, 02139, USA.
Membrane-based gas separation provides an energy-efficient approach for the simultaneous CO and HS removal from sour natural gas. The fluorinated polyimide (PI) membranes exhibited a promising balance between permeability and permselectivity for sour natural gas separation. To further improve the separation efficiency of fluorinated PI membranes, a melamine-copolymerization synthetic approach is devised that aims to incorporate melamine motifs with high sour gas affinity into the structure of the PI membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!